1010 lines
36 KiB
C++
1010 lines
36 KiB
C++
|
/*
|
||
|
* PURPOSE:
|
||
|
* Class representing an articulated rigid body. Stores the body's
|
||
|
* current state, allows forces and torques to be set, handles
|
||
|
* timestepping and implements Featherstone's algorithm.
|
||
|
*
|
||
|
* COPYRIGHT:
|
||
|
* Copyright (C) Stephen Thompson, <stephen@solarflare.org.uk>, 2011-2013
|
||
|
* Portions written By Erwin Coumans: replacing Eigen math library by Bullet LinearMath and a dedicated 6x6 matrix inverse (solveImatrix)
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
|
||
|
*/
|
||
|
|
||
|
|
||
|
#include "btMultiBody.h"
|
||
|
#include "btMultiBodyLink.h"
|
||
|
#include "btMultiBodyLinkCollider.h"
|
||
|
|
||
|
// #define INCLUDE_GYRO_TERM
|
||
|
|
||
|
namespace {
|
||
|
const btScalar SLEEP_EPSILON = btScalar(0.05); // this is a squared velocity (m^2 s^-2)
|
||
|
const btScalar SLEEP_TIMEOUT = btScalar(2); // in seconds
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
//
|
||
|
// Various spatial helper functions
|
||
|
//
|
||
|
|
||
|
namespace {
|
||
|
void SpatialTransform(const btMatrix3x3 &rotation_matrix, // rotates vectors in 'from' frame to vectors in 'to' frame
|
||
|
const btVector3 &displacement, // vector from origin of 'from' frame to origin of 'to' frame, in 'to' coordinates
|
||
|
const btVector3 &top_in, // top part of input vector
|
||
|
const btVector3 &bottom_in, // bottom part of input vector
|
||
|
btVector3 &top_out, // top part of output vector
|
||
|
btVector3 &bottom_out) // bottom part of output vector
|
||
|
{
|
||
|
top_out = rotation_matrix * top_in;
|
||
|
bottom_out = -displacement.cross(top_out) + rotation_matrix * bottom_in;
|
||
|
}
|
||
|
|
||
|
void InverseSpatialTransform(const btMatrix3x3 &rotation_matrix,
|
||
|
const btVector3 &displacement,
|
||
|
const btVector3 &top_in,
|
||
|
const btVector3 &bottom_in,
|
||
|
btVector3 &top_out,
|
||
|
btVector3 &bottom_out)
|
||
|
{
|
||
|
top_out = rotation_matrix.transpose() * top_in;
|
||
|
bottom_out = rotation_matrix.transpose() * (bottom_in + displacement.cross(top_in));
|
||
|
}
|
||
|
|
||
|
btScalar SpatialDotProduct(const btVector3 &a_top,
|
||
|
const btVector3 &a_bottom,
|
||
|
const btVector3 &b_top,
|
||
|
const btVector3 &b_bottom)
|
||
|
{
|
||
|
return a_bottom.dot(b_top) + a_top.dot(b_bottom);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
//
|
||
|
// Implementation of class btMultiBody
|
||
|
//
|
||
|
|
||
|
btMultiBody::btMultiBody(int n_links,
|
||
|
btScalar mass,
|
||
|
const btVector3 &inertia,
|
||
|
bool fixed_base_,
|
||
|
bool can_sleep_)
|
||
|
: base_quat(0, 0, 0, 1),
|
||
|
base_mass(mass),
|
||
|
base_inertia(inertia),
|
||
|
|
||
|
fixed_base(fixed_base_),
|
||
|
awake(true),
|
||
|
can_sleep(can_sleep_),
|
||
|
sleep_timer(0),
|
||
|
m_baseCollider(0),
|
||
|
m_linearDamping(0.04f),
|
||
|
m_angularDamping(0.04f),
|
||
|
m_useGyroTerm(true),
|
||
|
m_maxAppliedImpulse(1000.f),
|
||
|
m_hasSelfCollision(true)
|
||
|
{
|
||
|
links.resize(n_links);
|
||
|
|
||
|
vector_buf.resize(2*n_links);
|
||
|
matrix_buf.resize(n_links + 1);
|
||
|
m_real_buf.resize(6 + 2*n_links);
|
||
|
base_pos.setValue(0, 0, 0);
|
||
|
base_force.setValue(0, 0, 0);
|
||
|
base_torque.setValue(0, 0, 0);
|
||
|
}
|
||
|
|
||
|
btMultiBody::~btMultiBody()
|
||
|
{
|
||
|
}
|
||
|
|
||
|
void btMultiBody::setupPrismatic(int i,
|
||
|
btScalar mass,
|
||
|
const btVector3 &inertia,
|
||
|
int parent,
|
||
|
const btQuaternion &rot_parent_to_this,
|
||
|
const btVector3 &joint_axis,
|
||
|
const btVector3 &r_vector_when_q_zero,
|
||
|
bool disableParentCollision)
|
||
|
{
|
||
|
links[i].mass = mass;
|
||
|
links[i].inertia = inertia;
|
||
|
links[i].parent = parent;
|
||
|
links[i].zero_rot_parent_to_this = rot_parent_to_this;
|
||
|
links[i].axis_top.setValue(0,0,0);
|
||
|
links[i].axis_bottom = joint_axis;
|
||
|
links[i].e_vector = r_vector_when_q_zero;
|
||
|
links[i].is_revolute = false;
|
||
|
links[i].cached_rot_parent_to_this = rot_parent_to_this;
|
||
|
if (disableParentCollision)
|
||
|
links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
|
||
|
|
||
|
links[i].updateCache();
|
||
|
}
|
||
|
|
||
|
void btMultiBody::setupRevolute(int i,
|
||
|
btScalar mass,
|
||
|
const btVector3 &inertia,
|
||
|
int parent,
|
||
|
const btQuaternion &zero_rot_parent_to_this,
|
||
|
const btVector3 &joint_axis,
|
||
|
const btVector3 &parent_axis_position,
|
||
|
const btVector3 &my_axis_position,
|
||
|
bool disableParentCollision)
|
||
|
{
|
||
|
links[i].mass = mass;
|
||
|
links[i].inertia = inertia;
|
||
|
links[i].parent = parent;
|
||
|
links[i].zero_rot_parent_to_this = zero_rot_parent_to_this;
|
||
|
links[i].axis_top = joint_axis;
|
||
|
links[i].axis_bottom = joint_axis.cross(my_axis_position);
|
||
|
links[i].d_vector = my_axis_position;
|
||
|
links[i].e_vector = parent_axis_position;
|
||
|
links[i].is_revolute = true;
|
||
|
if (disableParentCollision)
|
||
|
links[i].m_flags |=BT_MULTIBODYLINKFLAGS_DISABLE_PARENT_COLLISION;
|
||
|
links[i].updateCache();
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
int btMultiBody::getParent(int i) const
|
||
|
{
|
||
|
return links[i].parent;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBody::getLinkMass(int i) const
|
||
|
{
|
||
|
return links[i].mass;
|
||
|
}
|
||
|
|
||
|
const btVector3 & btMultiBody::getLinkInertia(int i) const
|
||
|
{
|
||
|
return links[i].inertia;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBody::getJointPos(int i) const
|
||
|
{
|
||
|
return links[i].joint_pos;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBody::getJointVel(int i) const
|
||
|
{
|
||
|
return m_real_buf[6 + i];
|
||
|
}
|
||
|
|
||
|
void btMultiBody::setJointPos(int i, btScalar q)
|
||
|
{
|
||
|
links[i].joint_pos = q;
|
||
|
links[i].updateCache();
|
||
|
}
|
||
|
|
||
|
void btMultiBody::setJointVel(int i, btScalar qdot)
|
||
|
{
|
||
|
m_real_buf[6 + i] = qdot;
|
||
|
}
|
||
|
|
||
|
const btVector3 & btMultiBody::getRVector(int i) const
|
||
|
{
|
||
|
return links[i].cached_r_vector;
|
||
|
}
|
||
|
|
||
|
const btQuaternion & btMultiBody::getParentToLocalRot(int i) const
|
||
|
{
|
||
|
return links[i].cached_rot_parent_to_this;
|
||
|
}
|
||
|
|
||
|
btVector3 btMultiBody::localPosToWorld(int i, const btVector3 &local_pos) const
|
||
|
{
|
||
|
btVector3 result = local_pos;
|
||
|
while (i != -1) {
|
||
|
// 'result' is in frame i. transform it to frame parent(i)
|
||
|
result += getRVector(i);
|
||
|
result = quatRotate(getParentToLocalRot(i).inverse(),result);
|
||
|
i = getParent(i);
|
||
|
}
|
||
|
|
||
|
// 'result' is now in the base frame. transform it to world frame
|
||
|
result = quatRotate(getWorldToBaseRot().inverse() ,result);
|
||
|
result += getBasePos();
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
btVector3 btMultiBody::worldPosToLocal(int i, const btVector3 &world_pos) const
|
||
|
{
|
||
|
if (i == -1) {
|
||
|
// world to base
|
||
|
return quatRotate(getWorldToBaseRot(),(world_pos - getBasePos()));
|
||
|
} else {
|
||
|
// find position in parent frame, then transform to current frame
|
||
|
return quatRotate(getParentToLocalRot(i),worldPosToLocal(getParent(i), world_pos)) - getRVector(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btVector3 btMultiBody::localDirToWorld(int i, const btVector3 &local_dir) const
|
||
|
{
|
||
|
btVector3 result = local_dir;
|
||
|
while (i != -1) {
|
||
|
result = quatRotate(getParentToLocalRot(i).inverse() , result);
|
||
|
i = getParent(i);
|
||
|
}
|
||
|
result = quatRotate(getWorldToBaseRot().inverse() , result);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
btVector3 btMultiBody::worldDirToLocal(int i, const btVector3 &world_dir) const
|
||
|
{
|
||
|
if (i == -1) {
|
||
|
return quatRotate(getWorldToBaseRot(), world_dir);
|
||
|
} else {
|
||
|
return quatRotate(getParentToLocalRot(i) ,worldDirToLocal(getParent(i), world_dir));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btMultiBody::compTreeLinkVelocities(btVector3 *omega, btVector3 *vel) const
|
||
|
{
|
||
|
int num_links = getNumLinks();
|
||
|
// Calculates the velocities of each link (and the base) in its local frame
|
||
|
omega[0] = quatRotate(base_quat ,getBaseOmega());
|
||
|
vel[0] = quatRotate(base_quat ,getBaseVel());
|
||
|
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
const int parent = links[i].parent;
|
||
|
|
||
|
// transform parent vel into this frame, store in omega[i+1], vel[i+1]
|
||
|
SpatialTransform(btMatrix3x3(links[i].cached_rot_parent_to_this), links[i].cached_r_vector,
|
||
|
omega[parent+1], vel[parent+1],
|
||
|
omega[i+1], vel[i+1]);
|
||
|
|
||
|
// now add qidot * shat_i
|
||
|
omega[i+1] += getJointVel(i) * links[i].axis_top;
|
||
|
vel[i+1] += getJointVel(i) * links[i].axis_bottom;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBody::getKineticEnergy() const
|
||
|
{
|
||
|
int num_links = getNumLinks();
|
||
|
// TODO: would be better not to allocate memory here
|
||
|
btAlignedObjectArray<btVector3> omega;omega.resize(num_links+1);
|
||
|
btAlignedObjectArray<btVector3> vel;vel.resize(num_links+1);
|
||
|
compTreeLinkVelocities(&omega[0], &vel[0]);
|
||
|
|
||
|
// we will do the factor of 0.5 at the end
|
||
|
btScalar result = base_mass * vel[0].dot(vel[0]);
|
||
|
result += omega[0].dot(base_inertia * omega[0]);
|
||
|
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
result += links[i].mass * vel[i+1].dot(vel[i+1]);
|
||
|
result += omega[i+1].dot(links[i].inertia * omega[i+1]);
|
||
|
}
|
||
|
|
||
|
return 0.5f * result;
|
||
|
}
|
||
|
|
||
|
btVector3 btMultiBody::getAngularMomentum() const
|
||
|
{
|
||
|
int num_links = getNumLinks();
|
||
|
// TODO: would be better not to allocate memory here
|
||
|
btAlignedObjectArray<btVector3> omega;omega.resize(num_links+1);
|
||
|
btAlignedObjectArray<btVector3> vel;vel.resize(num_links+1);
|
||
|
btAlignedObjectArray<btQuaternion> rot_from_world;rot_from_world.resize(num_links+1);
|
||
|
compTreeLinkVelocities(&omega[0], &vel[0]);
|
||
|
|
||
|
rot_from_world[0] = base_quat;
|
||
|
btVector3 result = quatRotate(rot_from_world[0].inverse() , (base_inertia * omega[0]));
|
||
|
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
rot_from_world[i+1] = links[i].cached_rot_parent_to_this * rot_from_world[links[i].parent+1];
|
||
|
result += (quatRotate(rot_from_world[i+1].inverse() , (links[i].inertia * omega[i+1])));
|
||
|
}
|
||
|
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBody::clearForcesAndTorques()
|
||
|
{
|
||
|
base_force.setValue(0, 0, 0);
|
||
|
base_torque.setValue(0, 0, 0);
|
||
|
|
||
|
for (int i = 0; i < getNumLinks(); ++i) {
|
||
|
links[i].applied_force.setValue(0, 0, 0);
|
||
|
links[i].applied_torque.setValue(0, 0, 0);
|
||
|
links[i].joint_torque = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btMultiBody::clearVelocities()
|
||
|
{
|
||
|
for (int i = 0; i < 6 + getNumLinks(); ++i)
|
||
|
{
|
||
|
m_real_buf[i] = 0.f;
|
||
|
}
|
||
|
}
|
||
|
void btMultiBody::addLinkForce(int i, const btVector3 &f)
|
||
|
{
|
||
|
links[i].applied_force += f;
|
||
|
}
|
||
|
|
||
|
void btMultiBody::addLinkTorque(int i, const btVector3 &t)
|
||
|
{
|
||
|
links[i].applied_torque += t;
|
||
|
}
|
||
|
|
||
|
void btMultiBody::addJointTorque(int i, btScalar Q)
|
||
|
{
|
||
|
links[i].joint_torque += Q;
|
||
|
}
|
||
|
|
||
|
const btVector3 & btMultiBody::getLinkForce(int i) const
|
||
|
{
|
||
|
return links[i].applied_force;
|
||
|
}
|
||
|
|
||
|
const btVector3 & btMultiBody::getLinkTorque(int i) const
|
||
|
{
|
||
|
return links[i].applied_torque;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBody::getJointTorque(int i) const
|
||
|
{
|
||
|
return links[i].joint_torque;
|
||
|
}
|
||
|
|
||
|
|
||
|
inline btMatrix3x3 vecMulVecTranspose(const btVector3& v0, const btVector3& v1Transposed)
|
||
|
{
|
||
|
btVector3 row0 = btVector3(
|
||
|
v0.x() * v1Transposed.x(),
|
||
|
v0.x() * v1Transposed.y(),
|
||
|
v0.x() * v1Transposed.z());
|
||
|
btVector3 row1 = btVector3(
|
||
|
v0.y() * v1Transposed.x(),
|
||
|
v0.y() * v1Transposed.y(),
|
||
|
v0.y() * v1Transposed.z());
|
||
|
btVector3 row2 = btVector3(
|
||
|
v0.z() * v1Transposed.x(),
|
||
|
v0.z() * v1Transposed.y(),
|
||
|
v0.z() * v1Transposed.z());
|
||
|
|
||
|
btMatrix3x3 m(row0[0],row0[1],row0[2],
|
||
|
row1[0],row1[1],row1[2],
|
||
|
row2[0],row2[1],row2[2]);
|
||
|
return m;
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBody::stepVelocities(btScalar dt,
|
||
|
btAlignedObjectArray<btScalar> &scratch_r,
|
||
|
btAlignedObjectArray<btVector3> &scratch_v,
|
||
|
btAlignedObjectArray<btMatrix3x3> &scratch_m)
|
||
|
{
|
||
|
// Implement Featherstone's algorithm to calculate joint accelerations (q_double_dot)
|
||
|
// and the base linear & angular accelerations.
|
||
|
|
||
|
// We apply damping forces in this routine as well as any external forces specified by the
|
||
|
// caller (via addBaseForce etc).
|
||
|
|
||
|
// output should point to an array of 6 + num_links reals.
|
||
|
// Format is: 3 angular accelerations (in world frame), 3 linear accelerations (in world frame),
|
||
|
// num_links joint acceleration values.
|
||
|
|
||
|
int num_links = getNumLinks();
|
||
|
|
||
|
const btScalar DAMPING_K1_LINEAR = m_linearDamping;
|
||
|
const btScalar DAMPING_K2_LINEAR = m_linearDamping;
|
||
|
|
||
|
const btScalar DAMPING_K1_ANGULAR = m_angularDamping;
|
||
|
const btScalar DAMPING_K2_ANGULAR= m_angularDamping;
|
||
|
|
||
|
btVector3 base_vel = getBaseVel();
|
||
|
btVector3 base_omega = getBaseOmega();
|
||
|
|
||
|
// Temporary matrices/vectors -- use scratch space from caller
|
||
|
// so that we don't have to keep reallocating every frame
|
||
|
|
||
|
scratch_r.resize(2*num_links + 6);
|
||
|
scratch_v.resize(8*num_links + 6);
|
||
|
scratch_m.resize(4*num_links + 4);
|
||
|
|
||
|
btScalar * r_ptr = &scratch_r[0];
|
||
|
btScalar * output = &scratch_r[num_links]; // "output" holds the q_double_dot results
|
||
|
btVector3 * v_ptr = &scratch_v[0];
|
||
|
|
||
|
// vhat_i (top = angular, bottom = linear part)
|
||
|
btVector3 * vel_top_angular = v_ptr; v_ptr += num_links + 1;
|
||
|
btVector3 * vel_bottom_linear = v_ptr; v_ptr += num_links + 1;
|
||
|
|
||
|
// zhat_i^A
|
||
|
btVector3 * zero_acc_top_angular = v_ptr; v_ptr += num_links + 1;
|
||
|
btVector3 * zero_acc_bottom_linear = v_ptr; v_ptr += num_links + 1;
|
||
|
|
||
|
// chat_i (note NOT defined for the base)
|
||
|
btVector3 * coriolis_top_angular = v_ptr; v_ptr += num_links;
|
||
|
btVector3 * coriolis_bottom_linear = v_ptr; v_ptr += num_links;
|
||
|
|
||
|
// top left, top right and bottom left blocks of Ihat_i^A.
|
||
|
// bottom right block = transpose of top left block and is not stored.
|
||
|
// Note: the top right and bottom left blocks are always symmetric matrices, but we don't make use of this fact currently.
|
||
|
btMatrix3x3 * inertia_top_left = &scratch_m[num_links + 1];
|
||
|
btMatrix3x3 * inertia_top_right = &scratch_m[2*num_links + 2];
|
||
|
btMatrix3x3 * inertia_bottom_left = &scratch_m[3*num_links + 3];
|
||
|
|
||
|
// Cached 3x3 rotation matrices from parent frame to this frame.
|
||
|
btMatrix3x3 * rot_from_parent = &matrix_buf[0];
|
||
|
btMatrix3x3 * rot_from_world = &scratch_m[0];
|
||
|
|
||
|
// hhat_i, ahat_i
|
||
|
// hhat is NOT stored for the base (but ahat is)
|
||
|
btVector3 * h_top = num_links > 0 ? &vector_buf[0] : 0;
|
||
|
btVector3 * h_bottom = num_links > 0 ? &vector_buf[num_links] : 0;
|
||
|
btVector3 * accel_top = v_ptr; v_ptr += num_links + 1;
|
||
|
btVector3 * accel_bottom = v_ptr; v_ptr += num_links + 1;
|
||
|
|
||
|
// Y_i, D_i
|
||
|
btScalar * Y = r_ptr; r_ptr += num_links;
|
||
|
btScalar * D = num_links > 0 ? &m_real_buf[6 + num_links] : 0;
|
||
|
|
||
|
// ptr to the joint accel part of the output
|
||
|
btScalar * joint_accel = output + 6;
|
||
|
|
||
|
|
||
|
// Start of the algorithm proper.
|
||
|
|
||
|
// First 'upward' loop.
|
||
|
// Combines CompTreeLinkVelocities and InitTreeLinks from Mirtich.
|
||
|
|
||
|
rot_from_parent[0] = btMatrix3x3(base_quat);
|
||
|
|
||
|
vel_top_angular[0] = rot_from_parent[0] * base_omega;
|
||
|
vel_bottom_linear[0] = rot_from_parent[0] * base_vel;
|
||
|
|
||
|
if (fixed_base) {
|
||
|
zero_acc_top_angular[0] = zero_acc_bottom_linear[0] = btVector3(0,0,0);
|
||
|
} else {
|
||
|
zero_acc_top_angular[0] = - (rot_from_parent[0] * (base_force
|
||
|
- base_mass*(DAMPING_K1_LINEAR+DAMPING_K2_LINEAR*base_vel.norm())*base_vel));
|
||
|
|
||
|
zero_acc_bottom_linear[0] =
|
||
|
- (rot_from_parent[0] * base_torque);
|
||
|
|
||
|
if (m_useGyroTerm)
|
||
|
zero_acc_bottom_linear[0]+=vel_top_angular[0].cross( base_inertia * vel_top_angular[0] );
|
||
|
|
||
|
zero_acc_bottom_linear[0] += base_inertia * vel_top_angular[0] * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR*vel_top_angular[0].norm());
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
inertia_top_left[0] = btMatrix3x3(0,0,0,0,0,0,0,0,0);//::Zero();
|
||
|
|
||
|
|
||
|
inertia_top_right[0].setValue(base_mass, 0, 0,
|
||
|
0, base_mass, 0,
|
||
|
0, 0, base_mass);
|
||
|
inertia_bottom_left[0].setValue(base_inertia[0], 0, 0,
|
||
|
0, base_inertia[1], 0,
|
||
|
0, 0, base_inertia[2]);
|
||
|
|
||
|
rot_from_world[0] = rot_from_parent[0];
|
||
|
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
const int parent = links[i].parent;
|
||
|
rot_from_parent[i+1] = btMatrix3x3(links[i].cached_rot_parent_to_this);
|
||
|
|
||
|
|
||
|
rot_from_world[i+1] = rot_from_parent[i+1] * rot_from_world[parent+1];
|
||
|
|
||
|
// vhat_i = i_xhat_p(i) * vhat_p(i)
|
||
|
SpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
|
||
|
vel_top_angular[parent+1], vel_bottom_linear[parent+1],
|
||
|
vel_top_angular[i+1], vel_bottom_linear[i+1]);
|
||
|
|
||
|
// we can now calculate chat_i
|
||
|
// remember vhat_i is really vhat_p(i) (but in current frame) at this point
|
||
|
coriolis_bottom_linear[i] = vel_top_angular[i+1].cross(vel_top_angular[i+1].cross(links[i].cached_r_vector))
|
||
|
+ 2 * vel_top_angular[i+1].cross(links[i].axis_bottom) * getJointVel(i);
|
||
|
if (links[i].is_revolute) {
|
||
|
coriolis_top_angular[i] = vel_top_angular[i+1].cross(links[i].axis_top) * getJointVel(i);
|
||
|
coriolis_bottom_linear[i] += (getJointVel(i) * getJointVel(i)) * links[i].axis_top.cross(links[i].axis_bottom);
|
||
|
} else {
|
||
|
coriolis_top_angular[i] = btVector3(0,0,0);
|
||
|
}
|
||
|
|
||
|
// now set vhat_i to its true value by doing
|
||
|
// vhat_i += qidot * shat_i
|
||
|
vel_top_angular[i+1] += getJointVel(i) * links[i].axis_top;
|
||
|
vel_bottom_linear[i+1] += getJointVel(i) * links[i].axis_bottom;
|
||
|
|
||
|
// calculate zhat_i^A
|
||
|
zero_acc_top_angular[i+1] = - (rot_from_world[i+1] * (links[i].applied_force));
|
||
|
zero_acc_top_angular[i+1] += links[i].mass * (DAMPING_K1_LINEAR + DAMPING_K2_LINEAR*vel_bottom_linear[i+1].norm()) * vel_bottom_linear[i+1];
|
||
|
|
||
|
zero_acc_bottom_linear[i+1] =
|
||
|
- (rot_from_world[i+1] * links[i].applied_torque);
|
||
|
if (m_useGyroTerm)
|
||
|
{
|
||
|
zero_acc_bottom_linear[i+1] += vel_top_angular[i+1].cross( links[i].inertia * vel_top_angular[i+1] );
|
||
|
}
|
||
|
|
||
|
zero_acc_bottom_linear[i+1] += links[i].inertia * vel_top_angular[i+1] * (DAMPING_K1_ANGULAR + DAMPING_K2_ANGULAR*vel_top_angular[i+1].norm());
|
||
|
|
||
|
// calculate Ihat_i^A
|
||
|
inertia_top_left[i+1] = btMatrix3x3(0,0,0,0,0,0,0,0,0);//::Zero();
|
||
|
inertia_top_right[i+1].setValue(links[i].mass, 0, 0,
|
||
|
0, links[i].mass, 0,
|
||
|
0, 0, links[i].mass);
|
||
|
inertia_bottom_left[i+1].setValue(links[i].inertia[0], 0, 0,
|
||
|
0, links[i].inertia[1], 0,
|
||
|
0, 0, links[i].inertia[2]);
|
||
|
}
|
||
|
|
||
|
|
||
|
// 'Downward' loop.
|
||
|
// (part of TreeForwardDynamics in Mirtich.)
|
||
|
for (int i = num_links - 1; i >= 0; --i) {
|
||
|
|
||
|
h_top[i] = inertia_top_left[i+1] * links[i].axis_top + inertia_top_right[i+1] * links[i].axis_bottom;
|
||
|
h_bottom[i] = inertia_bottom_left[i+1] * links[i].axis_top + inertia_top_left[i+1].transpose() * links[i].axis_bottom;
|
||
|
btScalar val = SpatialDotProduct(links[i].axis_top, links[i].axis_bottom, h_top[i], h_bottom[i]);
|
||
|
D[i] = val;
|
||
|
Y[i] = links[i].joint_torque
|
||
|
- SpatialDotProduct(links[i].axis_top, links[i].axis_bottom, zero_acc_top_angular[i+1], zero_acc_bottom_linear[i+1])
|
||
|
- SpatialDotProduct(h_top[i], h_bottom[i], coriolis_top_angular[i], coriolis_bottom_linear[i]);
|
||
|
|
||
|
const int parent = links[i].parent;
|
||
|
|
||
|
|
||
|
// Ip += pXi * (Ii - hi hi' / Di) * iXp
|
||
|
const btScalar one_over_di = 1.0f / D[i];
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
const btMatrix3x3 TL = inertia_top_left[i+1] - vecMulVecTranspose(one_over_di * h_top[i] , h_bottom[i]);
|
||
|
const btMatrix3x3 TR = inertia_top_right[i+1] - vecMulVecTranspose(one_over_di * h_top[i] , h_top[i]);
|
||
|
const btMatrix3x3 BL = inertia_bottom_left[i+1]- vecMulVecTranspose(one_over_di * h_bottom[i] , h_bottom[i]);
|
||
|
|
||
|
|
||
|
btMatrix3x3 r_cross;
|
||
|
r_cross.setValue(
|
||
|
0, -links[i].cached_r_vector[2], links[i].cached_r_vector[1],
|
||
|
links[i].cached_r_vector[2], 0, -links[i].cached_r_vector[0],
|
||
|
-links[i].cached_r_vector[1], links[i].cached_r_vector[0], 0);
|
||
|
|
||
|
inertia_top_left[parent+1] += rot_from_parent[i+1].transpose() * ( TL - TR * r_cross ) * rot_from_parent[i+1];
|
||
|
inertia_top_right[parent+1] += rot_from_parent[i+1].transpose() * TR * rot_from_parent[i+1];
|
||
|
inertia_bottom_left[parent+1] += rot_from_parent[i+1].transpose() *
|
||
|
(r_cross * (TL - TR * r_cross) + BL - TL.transpose() * r_cross) * rot_from_parent[i+1];
|
||
|
|
||
|
|
||
|
// Zp += pXi * (Zi + Ii*ci + hi*Yi/Di)
|
||
|
btVector3 in_top, in_bottom, out_top, out_bottom;
|
||
|
const btScalar Y_over_D = Y[i] * one_over_di;
|
||
|
in_top = zero_acc_top_angular[i+1]
|
||
|
+ inertia_top_left[i+1] * coriolis_top_angular[i]
|
||
|
+ inertia_top_right[i+1] * coriolis_bottom_linear[i]
|
||
|
+ Y_over_D * h_top[i];
|
||
|
in_bottom = zero_acc_bottom_linear[i+1]
|
||
|
+ inertia_bottom_left[i+1] * coriolis_top_angular[i]
|
||
|
+ inertia_top_left[i+1].transpose() * coriolis_bottom_linear[i]
|
||
|
+ Y_over_D * h_bottom[i];
|
||
|
InverseSpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
|
||
|
in_top, in_bottom, out_top, out_bottom);
|
||
|
zero_acc_top_angular[parent+1] += out_top;
|
||
|
zero_acc_bottom_linear[parent+1] += out_bottom;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Second 'upward' loop
|
||
|
// (part of TreeForwardDynamics in Mirtich)
|
||
|
|
||
|
if (fixed_base)
|
||
|
{
|
||
|
accel_top[0] = accel_bottom[0] = btVector3(0,0,0);
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
if (num_links > 0)
|
||
|
{
|
||
|
//Matrix<btScalar, 6, 6> Imatrix;
|
||
|
//Imatrix.block<3,3>(0,0) = inertia_top_left[0];
|
||
|
//Imatrix.block<3,3>(3,0) = inertia_bottom_left[0];
|
||
|
//Imatrix.block<3,3>(0,3) = inertia_top_right[0];
|
||
|
//Imatrix.block<3,3>(3,3) = inertia_top_left[0].transpose();
|
||
|
//cached_imatrix_lu.reset(new Eigen::LU<Matrix<btScalar, 6, 6> >(Imatrix)); // TODO: Avoid memory allocation here?
|
||
|
|
||
|
cached_inertia_top_left = inertia_top_left[0];
|
||
|
cached_inertia_top_right = inertia_top_right[0];
|
||
|
cached_inertia_lower_left = inertia_bottom_left[0];
|
||
|
cached_inertia_lower_right= inertia_top_left[0].transpose();
|
||
|
|
||
|
}
|
||
|
btVector3 rhs_top (zero_acc_top_angular[0][0], zero_acc_top_angular[0][1], zero_acc_top_angular[0][2]);
|
||
|
btVector3 rhs_bot (zero_acc_bottom_linear[0][0], zero_acc_bottom_linear[0][1], zero_acc_bottom_linear[0][2]);
|
||
|
float result[6];
|
||
|
|
||
|
solveImatrix(rhs_top, rhs_bot, result);
|
||
|
// printf("result=%f,%f,%f,%f,%f,%f\n",result[0],result[0],result[0],result[0],result[0],result[0]);
|
||
|
for (int i = 0; i < 3; ++i) {
|
||
|
accel_top[0][i] = -result[i];
|
||
|
accel_bottom[0][i] = -result[i+3];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// now do the loop over the links
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
const int parent = links[i].parent;
|
||
|
SpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
|
||
|
accel_top[parent+1], accel_bottom[parent+1],
|
||
|
accel_top[i+1], accel_bottom[i+1]);
|
||
|
joint_accel[i] = (Y[i] - SpatialDotProduct(h_top[i], h_bottom[i], accel_top[i+1], accel_bottom[i+1])) / D[i];
|
||
|
accel_top[i+1] += coriolis_top_angular[i] + joint_accel[i] * links[i].axis_top;
|
||
|
accel_bottom[i+1] += coriolis_bottom_linear[i] + joint_accel[i] * links[i].axis_bottom;
|
||
|
}
|
||
|
|
||
|
// transform base accelerations back to the world frame.
|
||
|
btVector3 omegadot_out = rot_from_parent[0].transpose() * accel_top[0];
|
||
|
output[0] = omegadot_out[0];
|
||
|
output[1] = omegadot_out[1];
|
||
|
output[2] = omegadot_out[2];
|
||
|
|
||
|
btVector3 vdot_out = rot_from_parent[0].transpose() * accel_bottom[0];
|
||
|
output[3] = vdot_out[0];
|
||
|
output[4] = vdot_out[1];
|
||
|
output[5] = vdot_out[2];
|
||
|
// Final step: add the accelerations (times dt) to the velocities.
|
||
|
applyDeltaVee(output, dt);
|
||
|
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
void btMultiBody::solveImatrix(const btVector3& rhs_top, const btVector3& rhs_bot, float result[6]) const
|
||
|
{
|
||
|
int num_links = getNumLinks();
|
||
|
///solve I * x = rhs, so the result = invI * rhs
|
||
|
if (num_links == 0)
|
||
|
{
|
||
|
// in the case of 0 links (i.e. a plain rigid body, not a multibody) rhs * invI is easier
|
||
|
result[0] = rhs_bot[0] / base_inertia[0];
|
||
|
result[1] = rhs_bot[1] / base_inertia[1];
|
||
|
result[2] = rhs_bot[2] / base_inertia[2];
|
||
|
result[3] = rhs_top[0] / base_mass;
|
||
|
result[4] = rhs_top[1] / base_mass;
|
||
|
result[5] = rhs_top[2] / base_mass;
|
||
|
} else
|
||
|
{
|
||
|
/// Special routine for calculating the inverse of a spatial inertia matrix
|
||
|
///the 6x6 matrix is stored as 4 blocks of 3x3 matrices
|
||
|
btMatrix3x3 Binv = cached_inertia_top_right.inverse()*-1.f;
|
||
|
btMatrix3x3 tmp = cached_inertia_lower_right * Binv;
|
||
|
btMatrix3x3 invIupper_right = (tmp * cached_inertia_top_left + cached_inertia_lower_left).inverse();
|
||
|
tmp = invIupper_right * cached_inertia_lower_right;
|
||
|
btMatrix3x3 invI_upper_left = (tmp * Binv);
|
||
|
btMatrix3x3 invI_lower_right = (invI_upper_left).transpose();
|
||
|
tmp = cached_inertia_top_left * invI_upper_left;
|
||
|
tmp[0][0]-= 1.0;
|
||
|
tmp[1][1]-= 1.0;
|
||
|
tmp[2][2]-= 1.0;
|
||
|
btMatrix3x3 invI_lower_left = (Binv * tmp);
|
||
|
|
||
|
//multiply result = invI * rhs
|
||
|
{
|
||
|
btVector3 vtop = invI_upper_left*rhs_top;
|
||
|
btVector3 tmp;
|
||
|
tmp = invIupper_right * rhs_bot;
|
||
|
vtop += tmp;
|
||
|
btVector3 vbot = invI_lower_left*rhs_top;
|
||
|
tmp = invI_lower_right * rhs_bot;
|
||
|
vbot += tmp;
|
||
|
result[0] = vtop[0];
|
||
|
result[1] = vtop[1];
|
||
|
result[2] = vtop[2];
|
||
|
result[3] = vbot[0];
|
||
|
result[4] = vbot[1];
|
||
|
result[5] = vbot[2];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBody::calcAccelerationDeltas(const btScalar *force, btScalar *output,
|
||
|
btAlignedObjectArray<btScalar> &scratch_r, btAlignedObjectArray<btVector3> &scratch_v) const
|
||
|
{
|
||
|
// Temporary matrices/vectors -- use scratch space from caller
|
||
|
// so that we don't have to keep reallocating every frame
|
||
|
int num_links = getNumLinks();
|
||
|
scratch_r.resize(num_links);
|
||
|
scratch_v.resize(4*num_links + 4);
|
||
|
|
||
|
btScalar * r_ptr = num_links == 0 ? 0 : &scratch_r[0];
|
||
|
btVector3 * v_ptr = &scratch_v[0];
|
||
|
|
||
|
// zhat_i^A (scratch space)
|
||
|
btVector3 * zero_acc_top_angular = v_ptr; v_ptr += num_links + 1;
|
||
|
btVector3 * zero_acc_bottom_linear = v_ptr; v_ptr += num_links + 1;
|
||
|
|
||
|
// rot_from_parent (cached from calcAccelerations)
|
||
|
const btMatrix3x3 * rot_from_parent = &matrix_buf[0];
|
||
|
|
||
|
// hhat (cached), accel (scratch)
|
||
|
const btVector3 * h_top = num_links > 0 ? &vector_buf[0] : 0;
|
||
|
const btVector3 * h_bottom = num_links > 0 ? &vector_buf[num_links] : 0;
|
||
|
btVector3 * accel_top = v_ptr; v_ptr += num_links + 1;
|
||
|
btVector3 * accel_bottom = v_ptr; v_ptr += num_links + 1;
|
||
|
|
||
|
// Y_i (scratch), D_i (cached)
|
||
|
btScalar * Y = r_ptr; r_ptr += num_links;
|
||
|
const btScalar * D = num_links > 0 ? &m_real_buf[6 + num_links] : 0;
|
||
|
|
||
|
btAssert(num_links == 0 || r_ptr - &scratch_r[0] == scratch_r.size());
|
||
|
btAssert(v_ptr - &scratch_v[0] == scratch_v.size());
|
||
|
|
||
|
|
||
|
|
||
|
// First 'upward' loop.
|
||
|
// Combines CompTreeLinkVelocities and InitTreeLinks from Mirtich.
|
||
|
|
||
|
btVector3 input_force(force[3],force[4],force[5]);
|
||
|
btVector3 input_torque(force[0],force[1],force[2]);
|
||
|
|
||
|
// Fill in zero_acc
|
||
|
// -- set to force/torque on the base, zero otherwise
|
||
|
if (fixed_base)
|
||
|
{
|
||
|
zero_acc_top_angular[0] = zero_acc_bottom_linear[0] = btVector3(0,0,0);
|
||
|
} else
|
||
|
{
|
||
|
zero_acc_top_angular[0] = - (rot_from_parent[0] * input_force);
|
||
|
zero_acc_bottom_linear[0] = - (rot_from_parent[0] * input_torque);
|
||
|
}
|
||
|
for (int i = 0; i < num_links; ++i)
|
||
|
{
|
||
|
zero_acc_top_angular[i+1] = zero_acc_bottom_linear[i+1] = btVector3(0,0,0);
|
||
|
}
|
||
|
|
||
|
// 'Downward' loop.
|
||
|
for (int i = num_links - 1; i >= 0; --i)
|
||
|
{
|
||
|
|
||
|
Y[i] = - SpatialDotProduct(links[i].axis_top, links[i].axis_bottom, zero_acc_top_angular[i+1], zero_acc_bottom_linear[i+1]);
|
||
|
Y[i] += force[6 + i]; // add joint torque
|
||
|
|
||
|
const int parent = links[i].parent;
|
||
|
|
||
|
// Zp += pXi * (Zi + hi*Yi/Di)
|
||
|
btVector3 in_top, in_bottom, out_top, out_bottom;
|
||
|
const btScalar Y_over_D = Y[i] / D[i];
|
||
|
in_top = zero_acc_top_angular[i+1] + Y_over_D * h_top[i];
|
||
|
in_bottom = zero_acc_bottom_linear[i+1] + Y_over_D * h_bottom[i];
|
||
|
InverseSpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
|
||
|
in_top, in_bottom, out_top, out_bottom);
|
||
|
zero_acc_top_angular[parent+1] += out_top;
|
||
|
zero_acc_bottom_linear[parent+1] += out_bottom;
|
||
|
}
|
||
|
|
||
|
// ptr to the joint accel part of the output
|
||
|
btScalar * joint_accel = output + 6;
|
||
|
|
||
|
// Second 'upward' loop
|
||
|
if (fixed_base)
|
||
|
{
|
||
|
accel_top[0] = accel_bottom[0] = btVector3(0,0,0);
|
||
|
} else
|
||
|
{
|
||
|
btVector3 rhs_top (zero_acc_top_angular[0][0], zero_acc_top_angular[0][1], zero_acc_top_angular[0][2]);
|
||
|
btVector3 rhs_bot (zero_acc_bottom_linear[0][0], zero_acc_bottom_linear[0][1], zero_acc_bottom_linear[0][2]);
|
||
|
|
||
|
float result[6];
|
||
|
solveImatrix(rhs_top,rhs_bot, result);
|
||
|
// printf("result=%f,%f,%f,%f,%f,%f\n",result[0],result[0],result[0],result[0],result[0],result[0]);
|
||
|
|
||
|
for (int i = 0; i < 3; ++i) {
|
||
|
accel_top[0][i] = -result[i];
|
||
|
accel_bottom[0][i] = -result[i+3];
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
// now do the loop over the links
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
const int parent = links[i].parent;
|
||
|
SpatialTransform(rot_from_parent[i+1], links[i].cached_r_vector,
|
||
|
accel_top[parent+1], accel_bottom[parent+1],
|
||
|
accel_top[i+1], accel_bottom[i+1]);
|
||
|
joint_accel[i] = (Y[i] - SpatialDotProduct(h_top[i], h_bottom[i], accel_top[i+1], accel_bottom[i+1])) / D[i];
|
||
|
accel_top[i+1] += joint_accel[i] * links[i].axis_top;
|
||
|
accel_bottom[i+1] += joint_accel[i] * links[i].axis_bottom;
|
||
|
}
|
||
|
|
||
|
// transform base accelerations back to the world frame.
|
||
|
btVector3 omegadot_out;
|
||
|
omegadot_out = rot_from_parent[0].transpose() * accel_top[0];
|
||
|
output[0] = omegadot_out[0];
|
||
|
output[1] = omegadot_out[1];
|
||
|
output[2] = omegadot_out[2];
|
||
|
|
||
|
btVector3 vdot_out;
|
||
|
vdot_out = rot_from_parent[0].transpose() * accel_bottom[0];
|
||
|
|
||
|
output[3] = vdot_out[0];
|
||
|
output[4] = vdot_out[1];
|
||
|
output[5] = vdot_out[2];
|
||
|
}
|
||
|
|
||
|
void btMultiBody::stepPositions(btScalar dt)
|
||
|
{
|
||
|
int num_links = getNumLinks();
|
||
|
// step position by adding dt * velocity
|
||
|
btVector3 v = getBaseVel();
|
||
|
base_pos += dt * v;
|
||
|
|
||
|
// "exponential map" method for the rotation
|
||
|
btVector3 base_omega = getBaseOmega();
|
||
|
const btScalar omega_norm = base_omega.norm();
|
||
|
const btScalar omega_times_dt = omega_norm * dt;
|
||
|
const btScalar SMALL_ROTATION_ANGLE = 0.02f; // Theoretically this should be ~ pow(FLT_EPSILON,0.25) which is ~ 0.0156
|
||
|
if (fabs(omega_times_dt) < SMALL_ROTATION_ANGLE)
|
||
|
{
|
||
|
const btScalar xsq = omega_times_dt * omega_times_dt; // |omega|^2 * dt^2
|
||
|
const btScalar sin_term = dt * (xsq / 48.0f - 0.5f); // -sin(0.5*dt*|omega|) / |omega|
|
||
|
const btScalar cos_term = 1.0f - xsq / 8.0f; // cos(0.5*dt*|omega|)
|
||
|
base_quat = base_quat * btQuaternion(sin_term * base_omega[0],sin_term * base_omega[1],sin_term * base_omega[2],cos_term);
|
||
|
} else
|
||
|
{
|
||
|
base_quat = base_quat * btQuaternion(base_omega / omega_norm,-omega_times_dt);
|
||
|
}
|
||
|
|
||
|
// Make sure the quaternion represents a valid rotation.
|
||
|
// (Not strictly necessary, but helps prevent any round-off errors from building up.)
|
||
|
base_quat.normalize();
|
||
|
|
||
|
// Finally we can update joint_pos for each of the links
|
||
|
for (int i = 0; i < num_links; ++i)
|
||
|
{
|
||
|
float jointVel = getJointVel(i);
|
||
|
links[i].joint_pos += dt * jointVel;
|
||
|
links[i].updateCache();
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btMultiBody::fillContactJacobian(int link,
|
||
|
const btVector3 &contact_point,
|
||
|
const btVector3 &normal,
|
||
|
btScalar *jac,
|
||
|
btAlignedObjectArray<btScalar> &scratch_r,
|
||
|
btAlignedObjectArray<btVector3> &scratch_v,
|
||
|
btAlignedObjectArray<btMatrix3x3> &scratch_m) const
|
||
|
{
|
||
|
// temporary space
|
||
|
int num_links = getNumLinks();
|
||
|
scratch_v.resize(2*num_links + 2);
|
||
|
scratch_m.resize(num_links + 1);
|
||
|
|
||
|
btVector3 * v_ptr = &scratch_v[0];
|
||
|
btVector3 * p_minus_com = v_ptr; v_ptr += num_links + 1;
|
||
|
btVector3 * n_local = v_ptr; v_ptr += num_links + 1;
|
||
|
btAssert(v_ptr - &scratch_v[0] == scratch_v.size());
|
||
|
|
||
|
scratch_r.resize(num_links);
|
||
|
btScalar * results = num_links > 0 ? &scratch_r[0] : 0;
|
||
|
|
||
|
btMatrix3x3 * rot_from_world = &scratch_m[0];
|
||
|
|
||
|
const btVector3 p_minus_com_world = contact_point - base_pos;
|
||
|
|
||
|
rot_from_world[0] = btMatrix3x3(base_quat);
|
||
|
|
||
|
p_minus_com[0] = rot_from_world[0] * p_minus_com_world;
|
||
|
n_local[0] = rot_from_world[0] * normal;
|
||
|
|
||
|
// omega coeffients first.
|
||
|
btVector3 omega_coeffs;
|
||
|
omega_coeffs = p_minus_com_world.cross(normal);
|
||
|
jac[0] = omega_coeffs[0];
|
||
|
jac[1] = omega_coeffs[1];
|
||
|
jac[2] = omega_coeffs[2];
|
||
|
// then v coefficients
|
||
|
jac[3] = normal[0];
|
||
|
jac[4] = normal[1];
|
||
|
jac[5] = normal[2];
|
||
|
|
||
|
// Set remaining jac values to zero for now.
|
||
|
for (int i = 6; i < 6 + num_links; ++i) {
|
||
|
jac[i] = 0;
|
||
|
}
|
||
|
|
||
|
// Qdot coefficients, if necessary.
|
||
|
if (num_links > 0 && link > -1) {
|
||
|
|
||
|
// TODO: speed this up -- don't calculate for links we don't need.
|
||
|
// (Also, we are making 3 separate calls to this function, for the normal & the 2 friction directions,
|
||
|
// which is resulting in repeated work being done...)
|
||
|
|
||
|
// calculate required normals & positions in the local frames.
|
||
|
for (int i = 0; i < num_links; ++i) {
|
||
|
|
||
|
// transform to local frame
|
||
|
const int parent = links[i].parent;
|
||
|
const btMatrix3x3 mtx(links[i].cached_rot_parent_to_this);
|
||
|
rot_from_world[i+1] = mtx * rot_from_world[parent+1];
|
||
|
|
||
|
n_local[i+1] = mtx * n_local[parent+1];
|
||
|
p_minus_com[i+1] = mtx * p_minus_com[parent+1] - links[i].cached_r_vector;
|
||
|
|
||
|
// calculate the jacobian entry
|
||
|
if (links[i].is_revolute) {
|
||
|
results[i] = n_local[i+1].dot( links[i].axis_top.cross(p_minus_com[i+1]) + links[i].axis_bottom );
|
||
|
} else {
|
||
|
results[i] = n_local[i+1].dot( links[i].axis_bottom );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Now copy through to output.
|
||
|
while (link != -1) {
|
||
|
jac[6 + link] = results[link];
|
||
|
link = links[link].parent;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btMultiBody::wakeUp()
|
||
|
{
|
||
|
awake = true;
|
||
|
}
|
||
|
|
||
|
void btMultiBody::goToSleep()
|
||
|
{
|
||
|
awake = false;
|
||
|
}
|
||
|
|
||
|
void btMultiBody::checkMotionAndSleepIfRequired(btScalar timestep)
|
||
|
{
|
||
|
int num_links = getNumLinks();
|
||
|
extern bool gDisableDeactivation;
|
||
|
if (!can_sleep || gDisableDeactivation)
|
||
|
{
|
||
|
awake = true;
|
||
|
sleep_timer = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
// motion is computed as omega^2 + v^2 + (sum of squares of joint velocities)
|
||
|
btScalar motion = 0;
|
||
|
for (int i = 0; i < 6 + num_links; ++i) {
|
||
|
motion += m_real_buf[i] * m_real_buf[i];
|
||
|
}
|
||
|
|
||
|
if (motion < SLEEP_EPSILON) {
|
||
|
sleep_timer += timestep;
|
||
|
if (sleep_timer > SLEEP_TIMEOUT) {
|
||
|
goToSleep();
|
||
|
}
|
||
|
} else {
|
||
|
sleep_timer = 0;
|
||
|
if (!awake)
|
||
|
wakeUp();
|
||
|
}
|
||
|
}
|