Danbias/Code/OysterPhysics3D/RigidBody.cpp

231 lines
8.1 KiB
C++
Raw Normal View History

/////////////////////////////////////////////////////////////////////
// Created by Dan Andersson & Robin Engman 2013
/////////////////////////////////////////////////////////////////////
#include "RigidBody.h"
#include "Utilities.h"
using namespace ::Oyster::Collision3D;
using namespace ::Oyster::Physics3D;
using namespace ::Oyster::Math3D;
using namespace ::Utility::Value;
RigidBody::RigidBody( )
{ // by Dan Andersson
this->centerPos = Float4::standard_unit_w;
this->axis = Float4::null;
this->boundingReach = Float4( 0.5f, 0.5f, 0.5f, 0.0f );
this->momentum_Linear = Float4::null;
this->momentum_Angular = Float4::null;
this->impulse_Linear = Float4::null;
this->impulse_Angular = Float4::null;
2013-12-18 14:16:13 +01:00
this->restitutionCoeff = 1.0f;
this->frictionCoeff_Static = 0.5f;
this->frictionCoeff_Kinetic = 1.0f;
this->mass = 10;
this->momentOfInertiaTensor = MomentOfInertia();
this->rotation = Quaternion::identity;
}
RigidBody & RigidBody::operator = ( const RigidBody &body )
{ // by Dan Andersson
this->centerPos = body.centerPos;
this->axis = body.axis;
this->boundingReach = body.boundingReach;
this->momentum_Linear = body.momentum_Linear;
this->momentum_Angular = body.momentum_Angular;
this->impulse_Linear = body.impulse_Linear;
this->impulse_Angular = body.impulse_Angular;
2013-12-18 14:16:13 +01:00
this->restitutionCoeff = body.restitutionCoeff;
this->frictionCoeff_Static = body.frictionCoeff_Static;
this->frictionCoeff_Kinetic = body.frictionCoeff_Kinetic;
this->mass = body.mass;
this->momentOfInertiaTensor = body.momentOfInertiaTensor;
this->rotation = body.rotation;
return *this;
}
void RigidBody::Update_LeapFrog( Float updateFrameLength )
{ // by Dan Andersson: Euler leap frog update when Runga Kutta is not needed
// updating the linear
//Decrease momentum with 1% as "fall-off"
//! HACK: @todo Add real solution with fluid drag
2014-02-06 21:15:28 +01:00
//this->momentum_Linear = this->momentum_Linear*0.99f;
//this->momentum_Angular = this->momentum_Angular*0.99f;
// ds = dt * Formula::LinearVelocity( m, avg_G ) = dt * avg_G / m = (dt / m) * avg_G
2014-02-06 21:15:28 +01:00
Float3 delta = AverageWithDelta( this->momentum_Linear, this->impulse_Linear );
Float3 newPos = ( updateFrameLength)*this->momentum_Linear;
this->centerPos += newPos;
2014-02-06 21:15:28 +01:00
if(this->mass == 70)
{
const char *breakpoint = "STOP";
}
// updating the angular
// dO = dt * Formula::AngularVelocity( (RI)^-1, avg_H ) = dt * (RI)^-1 * avg_H
2014-02-07 11:43:18 +01:00
//this->axis += updateFrameLength * this->momentOfInertiaTensor.CalculateAngularVelocity( this->rotation, AverageWithDelta(this->momentum_Angular, this->impulse_Angular) );
//this->rotation = Rotation( this->axis );
// update momentums and clear impulse_Linear and impulse_Angular
this->momentum_Linear += this->impulse_Linear;
this->impulse_Linear = Float4::null;
2014-02-07 11:43:18 +01:00
//this->momentum_Angular += this->impulse_Angular; //! HACK: @todo Rotation temporary disabled
this->impulse_Angular = Float4::null;
}
void RigidBody::Predict_LeapFrog( Float3 &outDeltaPos, Float3 &outDeltaAxis, const Float3 &actingLinearImpulse, const Float3 &actingAngularImpulse, Float deltaTime )
{
// updating the linear
// ds = dt * Formula::LinearVelocity( m, avg_G ) = dt * avg_G / m = (dt / m) * avg_G
outDeltaPos = ( deltaTime / this->mass ) * AverageWithDelta( this->momentum_Linear, actingLinearImpulse );
// updating the angular
//Float4x4 rotationMatrix; ::Oyster::Math3D::RotationMatrix( this->rotation, rotationMatrix );
//Float4x4 wMomentOfInertiaTensor = TransformMatrix( rotationMatrix, this->momentOfInertiaTensor ); // RI
// dO = dt * Formula::AngularVelocity( (RI)^-1, avg_H ) = dt * (RI)^-1 * avg_H
//outDeltaAxis = Formula::AngularVelocity( wMomentOfInertiaTensor.GetInverse(), AverageWithDelta(this->momentum_Angular, actingAngularImpulse) );
outDeltaAxis = this->momentOfInertiaTensor.CalculateAngularVelocity( this->rotation, AverageWithDelta(this->momentum_Angular, this->impulse_Angular) );
}
void RigidBody::Move( const Float3 &deltaPos, const Float3 &deltaAxis )
2013-12-20 11:19:07 +01:00
{
this->centerPos += deltaPos;
this->axis += deltaAxis;
this->rotation = Rotation( this->axis );
}
void RigidBody::ApplyImpulse( const Float3 &worldJ, const Float3 &atWorldPos )
{ // by Dan Andersson
Float3 worldOffset = atWorldPos - this->centerPos;
if( worldOffset != Float3::null )
{
this->impulse_Linear += VectorProjection( worldJ, atWorldPos );
this->impulse_Angular += Formula::ImpulseTorque( worldJ, atWorldPos );
}
else
{
this->impulse_Linear += worldJ;
}
}
const MomentOfInertia & RigidBody::GetMomentOfInertia() const
{ // by Dan Andersson
return this->momentOfInertiaTensor;
}
Float RigidBody::GetMass() const
{ // by Dan Andersson
return this->mass;
}
const Quaternion & RigidBody::GetRotationQuaternion() const
{ // by Dan Andersson
return this->rotation;
}
Float4x4 RigidBody::GetRotationMatrix() const
{ // by Dan Andersson
return RotationMatrix( this->rotation );
}
Float4x4 RigidBody::GetOrientation() const
{ // by Dan Andersson
return ::Oyster::Math3D::OrientationMatrix( this->rotation, this->centerPos );
}
Float4x4 RigidBody::GetView() const
{ // by Dan Andersson
return ViewMatrix( this->rotation, this->centerPos );
}
Float3 RigidBody::GetVelocity_Linear() const
{ // by Dan Andersson
return Formula::LinearVelocity( this->mass, this->momentum_Linear );
}
Float3 RigidBody::GetVelocity_Angular() const
{ // by Dan Andersson
return this->momentOfInertiaTensor.CalculateAngularVelocity( this->rotation, this->momentum_Angular );
}
Float3 RigidBody::GetLinearMomentum( const Float3 &atWorldPos ) const
{ // by Dan Andersson
2014-02-04 16:56:31 +01:00
Float3 offset = atWorldPos - this->centerPos;
if( offset.Dot(offset) > 0.0f )
{
return this->momentum_Linear + Formula::TangentialLinearMomentum( this->momentum_Angular, offset );
}
return this->momentum_Linear;
}
void RigidBody::SetMomentOfInertia_KeepVelocity( const MomentOfInertia &localTensorI )
{ // by Dan Andersson
Float3 w = this->momentOfInertiaTensor.CalculateAngularVelocity( this->rotation, this->momentum_Angular );
this->momentOfInertiaTensor = localTensorI;
this->momentum_Angular = this->momentOfInertiaTensor.CalculateAngularVelocity( this->rotation, w );
}
void RigidBody::SetMomentOfInertia_KeepMomentum( const MomentOfInertia &localTensorI )
{ // by Dan Andersson
this->momentOfInertiaTensor = localTensorI;
}
void RigidBody::SetMass_KeepVelocity( const Float &m )
{ // by Dan Andersson
if( m != 0.0f )
{ // insanity check! Mass must be invertable
Float3 v = Formula::LinearVelocity( this->mass, this->momentum_Linear );
this->mass = m;
this->momentum_Linear = Formula::LinearMomentum( this->mass, v );
}
}
void RigidBody::SetMass_KeepMomentum( const Float &m )
{ // by Dan Anderson
if( m != 0.0f )
{ // insanity check! Mass must be invertable
this->mass = m;
}
}
void RigidBody::SetRotation( const Float3 &axis )
{ // by Dan Andersson
this->axis = axis;
this->rotation = Rotation( this->axis );
}
void RigidBody::SetMomentum_Linear( const Float3 &worldG, const Float3 &atWorldPos )
{ // by Dan Andersson
Float3 worldOffset = atWorldPos - this->centerPos;
this->momentum_Linear = VectorProjection( worldG, worldOffset );
this->momentum_Angular = Formula::AngularMomentum( worldG, worldOffset );
}
void RigidBody::SetVelocity_Linear( const Float3 &worldV )
{ // by Dan Andersson
this->momentum_Linear = Formula::LinearMomentum( this->mass, worldV );
}
void RigidBody::SetVelocity_Linear( const Float3 &worldV, const Float3 &atWorldPos )
{ // by Dan Andersson
Float3 worldOffset = atWorldPos - this->centerPos;
this->momentum_Linear = Formula::LinearMomentum( this->mass, VectorProjection(worldV, worldOffset) );
this->momentum_Angular = this->momentOfInertiaTensor.CalculateAngularMomentum( this->rotation, Formula::AngularVelocity(worldV, worldOffset) );
}
void RigidBody::SetVelocity_Angular( const Float3 &worldW )
{ // by Dan Andersson
this->momentum_Angular = this->momentOfInertiaTensor.CalculateAngularMomentum( this->rotation, worldW );
}
void RigidBody::SetImpulse_Linear( const Float3 &worldJ, const Float3 &atWorldPos )
{ // by Dan Andersson
Float3 worldOffset = atWorldPos - this->centerPos;
this->impulse_Linear = VectorProjection( worldJ, worldOffset );
this->impulse_Angular = Formula::ImpulseTorque( worldJ, worldOffset );
}