796 lines
30 KiB
C++
796 lines
30 KiB
C++
|
/*
|
||
|
Bullet Continuous Collision Detection and Physics Library
|
||
|
Copyright (c) 2013 Erwin Coumans http://bulletphysics.org
|
||
|
|
||
|
This software is provided 'as-is', without any express or implied warranty.
|
||
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
||
|
Permission is granted to anyone to use this software for any purpose,
|
||
|
including commercial applications, and to alter it and redistribute it freely,
|
||
|
subject to the following restrictions:
|
||
|
|
||
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
||
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
||
|
3. This notice may not be removed or altered from any source distribution.
|
||
|
*/
|
||
|
|
||
|
#include "btMultiBodyConstraintSolver.h"
|
||
|
#include "BulletCollision/NarrowPhaseCollision/btPersistentManifold.h"
|
||
|
#include "btMultiBodyLinkCollider.h"
|
||
|
|
||
|
#include "BulletDynamics/ConstraintSolver/btSolverBody.h"
|
||
|
#include "btMultiBodyConstraint.h"
|
||
|
#include "BulletDynamics/ConstraintSolver/btContactSolverInfo.h"
|
||
|
|
||
|
#include "LinearMath/btQuickprof.h"
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveSingleIteration(int iteration, btCollisionObject** bodies ,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
|
||
|
{
|
||
|
btScalar val = btSequentialImpulseConstraintSolver::solveSingleIteration(iteration, bodies ,numBodies,manifoldPtr, numManifolds,constraints,numConstraints,infoGlobal,debugDrawer);
|
||
|
|
||
|
//solve featherstone non-contact constraints
|
||
|
|
||
|
//printf("m_multiBodyNonContactConstraints = %d\n",m_multiBodyNonContactConstraints.size());
|
||
|
for (int j=0;j<m_multiBodyNonContactConstraints.size();j++)
|
||
|
{
|
||
|
btMultiBodySolverConstraint& constraint = m_multiBodyNonContactConstraints[j];
|
||
|
//if (iteration < constraint.m_overrideNumSolverIterations)
|
||
|
//resolveSingleConstraintRowGenericMultiBody(constraint);
|
||
|
resolveSingleConstraintRowGeneric(constraint);
|
||
|
}
|
||
|
|
||
|
//solve featherstone normal contact
|
||
|
for (int j=0;j<m_multiBodyNormalContactConstraints.size();j++)
|
||
|
{
|
||
|
btMultiBodySolverConstraint& constraint = m_multiBodyNormalContactConstraints[j];
|
||
|
if (iteration < infoGlobal.m_numIterations)
|
||
|
resolveSingleConstraintRowGeneric(constraint);
|
||
|
}
|
||
|
|
||
|
//solve featherstone frictional contact
|
||
|
|
||
|
for (int j=0;j<this->m_multiBodyFrictionContactConstraints.size();j++)
|
||
|
{
|
||
|
if (iteration < infoGlobal.m_numIterations)
|
||
|
{
|
||
|
btMultiBodySolverConstraint& frictionConstraint = m_multiBodyFrictionContactConstraints[j];
|
||
|
btScalar totalImpulse = m_multiBodyNormalContactConstraints[frictionConstraint.m_frictionIndex].m_appliedImpulse;
|
||
|
//adjust friction limits here
|
||
|
if (totalImpulse>btScalar(0))
|
||
|
{
|
||
|
frictionConstraint.m_lowerLimit = -(frictionConstraint.m_friction*totalImpulse);
|
||
|
frictionConstraint.m_upperLimit = frictionConstraint.m_friction*totalImpulse;
|
||
|
resolveSingleConstraintRowGeneric(frictionConstraint);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveGroupCacheFriendlySetup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifoldPtr, int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& infoGlobal,btIDebugDraw* debugDrawer)
|
||
|
{
|
||
|
m_multiBodyNonContactConstraints.resize(0);
|
||
|
m_multiBodyNormalContactConstraints.resize(0);
|
||
|
m_multiBodyFrictionContactConstraints.resize(0);
|
||
|
m_data.m_jacobians.resize(0);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(0);
|
||
|
m_data.m_deltaVelocities.resize(0);
|
||
|
|
||
|
for (int i=0;i<numBodies;i++)
|
||
|
{
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(bodies[i]);
|
||
|
if (fcA)
|
||
|
{
|
||
|
fcA->m_multiBody->setCompanionId(-1);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btScalar val = btSequentialImpulseConstraintSolver::solveGroupCacheFriendlySetup( bodies,numBodies,manifoldPtr, numManifolds, constraints,numConstraints,infoGlobal,debugDrawer);
|
||
|
|
||
|
return val;
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::applyDeltaVee(btScalar* delta_vee, btScalar impulse, int velocityIndex, int ndof)
|
||
|
{
|
||
|
for (int i = 0; i < ndof; ++i)
|
||
|
m_data.m_deltaVelocities[velocityIndex+i] += delta_vee[i] * impulse;
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::resolveSingleConstraintRowGeneric(const btMultiBodySolverConstraint& c)
|
||
|
{
|
||
|
|
||
|
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
|
||
|
btScalar deltaVelADotn=0;
|
||
|
btScalar deltaVelBDotn=0;
|
||
|
btSolverBody* bodyA = 0;
|
||
|
btSolverBody* bodyB = 0;
|
||
|
int ndofA=0;
|
||
|
int ndofB=0;
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
ndofA = c.m_multiBodyA->getNumLinks() + 6;
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
|
||
|
} else
|
||
|
{
|
||
|
bodyA = &m_tmpSolverBodyPool[c.m_solverBodyIdA];
|
||
|
deltaVelADotn += c.m_contactNormal1.dot(bodyA->internalGetDeltaLinearVelocity()) + c.m_relpos1CrossNormal.dot(bodyA->internalGetDeltaAngularVelocity());
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
ndofB = c.m_multiBodyB->getNumLinks() + 6;
|
||
|
for (int i = 0; i < ndofB; ++i)
|
||
|
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
|
||
|
} else
|
||
|
{
|
||
|
bodyB = &m_tmpSolverBodyPool[c.m_solverBodyIdB];
|
||
|
deltaVelBDotn += c.m_contactNormal2.dot(bodyB->internalGetDeltaLinearVelocity()) + c.m_relpos2CrossNormal.dot(bodyB->internalGetDeltaAngularVelocity());
|
||
|
}
|
||
|
|
||
|
|
||
|
deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
|
||
|
deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
|
||
|
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
|
||
|
|
||
|
if (sum < c.m_lowerLimit)
|
||
|
{
|
||
|
deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
|
||
|
c.m_appliedImpulse = c.m_lowerLimit;
|
||
|
}
|
||
|
else if (sum > c.m_upperLimit)
|
||
|
{
|
||
|
deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
|
||
|
c.m_appliedImpulse = c.m_upperLimit;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c.m_appliedImpulse = sum;
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
|
||
|
c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
|
||
|
} else
|
||
|
{
|
||
|
bodyA->internalApplyImpulse(c.m_contactNormal1*bodyA->internalGetInvMass(),c.m_angularComponentA,deltaImpulse);
|
||
|
|
||
|
}
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
|
||
|
c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
|
||
|
} else
|
||
|
{
|
||
|
bodyB->internalApplyImpulse(c.m_contactNormal2*bodyB->internalGetInvMass(),c.m_angularComponentB,deltaImpulse);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBodyConstraintSolver::resolveSingleConstraintRowGenericMultiBody(const btMultiBodySolverConstraint& c)
|
||
|
{
|
||
|
|
||
|
btScalar deltaImpulse = c.m_rhs-btScalar(c.m_appliedImpulse)*c.m_cfm;
|
||
|
btScalar deltaVelADotn=0;
|
||
|
btScalar deltaVelBDotn=0;
|
||
|
int ndofA=0;
|
||
|
int ndofB=0;
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
ndofA = c.m_multiBodyA->getNumLinks() + 6;
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
deltaVelADotn += m_data.m_jacobians[c.m_jacAindex+i] * m_data.m_deltaVelocities[c.m_deltaVelAindex+i];
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
ndofB = c.m_multiBodyB->getNumLinks() + 6;
|
||
|
for (int i = 0; i < ndofB; ++i)
|
||
|
deltaVelBDotn += m_data.m_jacobians[c.m_jacBindex+i] * m_data.m_deltaVelocities[c.m_deltaVelBindex+i];
|
||
|
}
|
||
|
|
||
|
|
||
|
deltaImpulse -= deltaVelADotn*c.m_jacDiagABInv;//m_jacDiagABInv = 1./denom
|
||
|
deltaImpulse -= deltaVelBDotn*c.m_jacDiagABInv;
|
||
|
const btScalar sum = btScalar(c.m_appliedImpulse) + deltaImpulse;
|
||
|
|
||
|
if (sum < c.m_lowerLimit)
|
||
|
{
|
||
|
deltaImpulse = c.m_lowerLimit-c.m_appliedImpulse;
|
||
|
c.m_appliedImpulse = c.m_lowerLimit;
|
||
|
}
|
||
|
else if (sum > c.m_upperLimit)
|
||
|
{
|
||
|
deltaImpulse = c.m_upperLimit-c.m_appliedImpulse;
|
||
|
c.m_appliedImpulse = c.m_upperLimit;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
c.m_appliedImpulse = sum;
|
||
|
}
|
||
|
|
||
|
if (c.m_multiBodyA)
|
||
|
{
|
||
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse,c.m_deltaVelAindex,ndofA);
|
||
|
c.m_multiBodyA->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacAindex],deltaImpulse);
|
||
|
}
|
||
|
if (c.m_multiBodyB)
|
||
|
{
|
||
|
applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse,c.m_deltaVelBindex,ndofB);
|
||
|
c.m_multiBodyB->applyDeltaVee(&m_data.m_deltaVelocitiesUnitImpulse[c.m_jacBindex],deltaImpulse);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBodyConstraintSolver::setupMultiBodyContactConstraint(btMultiBodySolverConstraint& solverConstraint,
|
||
|
const btVector3& contactNormal,
|
||
|
btManifoldPoint& cp, const btContactSolverInfo& infoGlobal,
|
||
|
btScalar& relaxation,
|
||
|
bool isFriction, btScalar desiredVelocity, btScalar cfmSlip)
|
||
|
{
|
||
|
|
||
|
BT_PROFILE("setupMultiBodyContactConstraint");
|
||
|
btVector3 rel_pos1;
|
||
|
btVector3 rel_pos2;
|
||
|
|
||
|
btMultiBody* multiBodyA = solverConstraint.m_multiBodyA;
|
||
|
btMultiBody* multiBodyB = solverConstraint.m_multiBodyB;
|
||
|
|
||
|
const btVector3& pos1 = cp.getPositionWorldOnA();
|
||
|
const btVector3& pos2 = cp.getPositionWorldOnB();
|
||
|
|
||
|
btSolverBody* bodyA = multiBodyA ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdA];
|
||
|
btSolverBody* bodyB = multiBodyB ? 0 : &m_tmpSolverBodyPool[solverConstraint.m_solverBodyIdB];
|
||
|
|
||
|
btRigidBody* rb0 = multiBodyA ? 0 : bodyA->m_originalBody;
|
||
|
btRigidBody* rb1 = multiBodyB ? 0 : bodyB->m_originalBody;
|
||
|
|
||
|
if (bodyA)
|
||
|
rel_pos1 = pos1 - bodyA->getWorldTransform().getOrigin();
|
||
|
if (bodyB)
|
||
|
rel_pos2 = pos2 - bodyB->getWorldTransform().getOrigin();
|
||
|
|
||
|
relaxation = 1.f;
|
||
|
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
const int ndofA = multiBodyA->getNumLinks() + 6;
|
||
|
|
||
|
solverConstraint.m_deltaVelAindex = multiBodyA->getCompanionId();
|
||
|
|
||
|
if (solverConstraint.m_deltaVelAindex <0)
|
||
|
{
|
||
|
solverConstraint.m_deltaVelAindex = m_data.m_deltaVelocities.size();
|
||
|
multiBodyA->setCompanionId(solverConstraint.m_deltaVelAindex);
|
||
|
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofA);
|
||
|
} else
|
||
|
{
|
||
|
btAssert(m_data.m_deltaVelocities.size() >= solverConstraint.m_deltaVelAindex+ndofA);
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_jacAindex = m_data.m_jacobians.size();
|
||
|
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofA);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofA);
|
||
|
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
|
||
|
|
||
|
btScalar* jac1=&m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->fillContactJacobian(solverConstraint.m_linkA, cp.getPositionWorldOnA(), contactNormal, jac1, m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
|
||
|
btScalar* delta = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacAindex],delta,m_data.scratch_r, m_data.scratch_v);
|
||
|
} else
|
||
|
{
|
||
|
btVector3 torqueAxis0 = rel_pos1.cross(contactNormal);
|
||
|
solverConstraint.m_angularComponentA = rb0 ? rb0->getInvInertiaTensorWorld()*torqueAxis0*rb0->getAngularFactor() : btVector3(0,0,0);
|
||
|
solverConstraint.m_relpos1CrossNormal = torqueAxis0;
|
||
|
solverConstraint.m_contactNormal1 = contactNormal;
|
||
|
}
|
||
|
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
const int ndofB = multiBodyB->getNumLinks() + 6;
|
||
|
|
||
|
solverConstraint.m_deltaVelBindex = multiBodyB->getCompanionId();
|
||
|
if (solverConstraint.m_deltaVelBindex <0)
|
||
|
{
|
||
|
solverConstraint.m_deltaVelBindex = m_data.m_deltaVelocities.size();
|
||
|
multiBodyB->setCompanionId(solverConstraint.m_deltaVelBindex);
|
||
|
m_data.m_deltaVelocities.resize(m_data.m_deltaVelocities.size()+ndofB);
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_jacBindex = m_data.m_jacobians.size();
|
||
|
|
||
|
m_data.m_jacobians.resize(m_data.m_jacobians.size()+ndofB);
|
||
|
m_data.m_deltaVelocitiesUnitImpulse.resize(m_data.m_deltaVelocitiesUnitImpulse.size()+ndofB);
|
||
|
btAssert(m_data.m_jacobians.size() == m_data.m_deltaVelocitiesUnitImpulse.size());
|
||
|
|
||
|
multiBodyB->fillContactJacobian(solverConstraint.m_linkB, cp.getPositionWorldOnB(), -contactNormal, &m_data.m_jacobians[solverConstraint.m_jacBindex], m_data.scratch_r, m_data.scratch_v, m_data.scratch_m);
|
||
|
multiBodyB->calcAccelerationDeltas(&m_data.m_jacobians[solverConstraint.m_jacBindex],&m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex],m_data.scratch_r, m_data.scratch_v);
|
||
|
} else
|
||
|
{
|
||
|
btVector3 torqueAxis1 = rel_pos2.cross(contactNormal);
|
||
|
solverConstraint.m_angularComponentB = rb1 ? rb1->getInvInertiaTensorWorld()*-torqueAxis1*rb1->getAngularFactor() : btVector3(0,0,0);
|
||
|
solverConstraint.m_relpos2CrossNormal = -torqueAxis1;
|
||
|
solverConstraint.m_contactNormal2 = -contactNormal;
|
||
|
}
|
||
|
|
||
|
{
|
||
|
|
||
|
btVector3 vec;
|
||
|
btScalar denom0 = 0.f;
|
||
|
btScalar denom1 = 0.f;
|
||
|
btScalar* jacB = 0;
|
||
|
btScalar* jacA = 0;
|
||
|
btScalar* lambdaA =0;
|
||
|
btScalar* lambdaB =0;
|
||
|
int ndofA = 0;
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
ndofA = multiBodyA->getNumLinks() + 6;
|
||
|
jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
lambdaA = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
{
|
||
|
btScalar j = jacA[i] ;
|
||
|
btScalar l =lambdaA[i];
|
||
|
denom0 += j*l;
|
||
|
}
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
{
|
||
|
vec = ( solverConstraint.m_angularComponentA).cross(rel_pos1);
|
||
|
denom0 = rb0->getInvMass() + contactNormal.dot(vec);
|
||
|
}
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
const int ndofB = multiBodyB->getNumLinks() + 6;
|
||
|
jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
|
||
|
lambdaB = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||
|
for (int i = 0; i < ndofB; ++i)
|
||
|
{
|
||
|
btScalar j = jacB[i] ;
|
||
|
btScalar l =lambdaB[i];
|
||
|
denom1 += j*l;
|
||
|
}
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
{
|
||
|
vec = ( -solverConstraint.m_angularComponentB).cross(rel_pos2);
|
||
|
denom1 = rb1->getInvMass() + contactNormal.dot(vec);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (multiBodyA && (multiBodyA==multiBodyB))
|
||
|
{
|
||
|
// ndof1 == ndof2 in this case
|
||
|
for (int i = 0; i < ndofA; ++i)
|
||
|
{
|
||
|
denom1 += jacB[i] * lambdaA[i];
|
||
|
denom1 += jacA[i] * lambdaB[i];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
btScalar d = denom0+denom1;
|
||
|
if (btFabs(d)>SIMD_EPSILON)
|
||
|
{
|
||
|
|
||
|
solverConstraint.m_jacDiagABInv = relaxation/(d);
|
||
|
} else
|
||
|
{
|
||
|
solverConstraint.m_jacDiagABInv = 1.f;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
//compute rhs and remaining solverConstraint fields
|
||
|
|
||
|
|
||
|
|
||
|
btScalar restitution = 0.f;
|
||
|
btScalar penetration = isFriction? 0 : cp.getDistance()+infoGlobal.m_linearSlop;
|
||
|
|
||
|
btScalar rel_vel = 0.f;
|
||
|
int ndofA = 0;
|
||
|
int ndofB = 0;
|
||
|
{
|
||
|
|
||
|
btVector3 vel1,vel2;
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
ndofA = multiBodyA->getNumLinks() + 6;
|
||
|
btScalar* jacA = &m_data.m_jacobians[solverConstraint.m_jacAindex];
|
||
|
for (int i = 0; i < ndofA ; ++i)
|
||
|
rel_vel += multiBodyA->getVelocityVector()[i] * jacA[i];
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
{
|
||
|
rel_vel += rb0->getVelocityInLocalPoint(rel_pos1).dot(solverConstraint.m_contactNormal1);
|
||
|
}
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
ndofB = multiBodyB->getNumLinks() + 6;
|
||
|
btScalar* jacB = &m_data.m_jacobians[solverConstraint.m_jacBindex];
|
||
|
for (int i = 0; i < ndofB ; ++i)
|
||
|
rel_vel += multiBodyB->getVelocityVector()[i] * jacB[i];
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
{
|
||
|
rel_vel += rb1->getVelocityInLocalPoint(rel_pos2).dot(solverConstraint.m_contactNormal2);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_friction = cp.m_combinedFriction;
|
||
|
|
||
|
|
||
|
restitution = restitutionCurve(rel_vel, cp.m_combinedRestitution);
|
||
|
if (restitution <= btScalar(0.))
|
||
|
{
|
||
|
restitution = 0.f;
|
||
|
};
|
||
|
}
|
||
|
|
||
|
|
||
|
///warm starting (or zero if disabled)
|
||
|
if (infoGlobal.m_solverMode & SOLVER_USE_WARMSTARTING)
|
||
|
{
|
||
|
solverConstraint.m_appliedImpulse = isFriction ? 0 : cp.m_appliedImpulse * infoGlobal.m_warmstartingFactor;
|
||
|
|
||
|
if (solverConstraint.m_appliedImpulse)
|
||
|
{
|
||
|
if (multiBodyA)
|
||
|
{
|
||
|
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||
|
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacAindex];
|
||
|
multiBodyA->applyDeltaVee(deltaV,impulse);
|
||
|
applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelAindex,ndofA);
|
||
|
} else
|
||
|
{
|
||
|
if (rb0)
|
||
|
bodyA->internalApplyImpulse(solverConstraint.m_contactNormal1*bodyA->internalGetInvMass()*rb0->getLinearFactor(),solverConstraint.m_angularComponentA,solverConstraint.m_appliedImpulse);
|
||
|
}
|
||
|
if (multiBodyB)
|
||
|
{
|
||
|
btScalar impulse = solverConstraint.m_appliedImpulse;
|
||
|
btScalar* deltaV = &m_data.m_deltaVelocitiesUnitImpulse[solverConstraint.m_jacBindex];
|
||
|
multiBodyB->applyDeltaVee(deltaV,impulse);
|
||
|
applyDeltaVee(deltaV,impulse,solverConstraint.m_deltaVelBindex,ndofB);
|
||
|
} else
|
||
|
{
|
||
|
if (rb1)
|
||
|
bodyB->internalApplyImpulse(-solverConstraint.m_contactNormal2*bodyB->internalGetInvMass()*rb1->getLinearFactor(),-solverConstraint.m_angularComponentB,-(btScalar)solverConstraint.m_appliedImpulse);
|
||
|
}
|
||
|
}
|
||
|
} else
|
||
|
{
|
||
|
solverConstraint.m_appliedImpulse = 0.f;
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_appliedPushImpulse = 0.f;
|
||
|
|
||
|
{
|
||
|
|
||
|
|
||
|
btScalar positionalError = 0.f;
|
||
|
btScalar velocityError = restitution - rel_vel;// * damping;
|
||
|
|
||
|
|
||
|
btScalar erp = infoGlobal.m_erp2;
|
||
|
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
|
||
|
{
|
||
|
erp = infoGlobal.m_erp;
|
||
|
}
|
||
|
|
||
|
if (penetration>0)
|
||
|
{
|
||
|
positionalError = 0;
|
||
|
velocityError = -penetration / infoGlobal.m_timeStep;
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
positionalError = -penetration * erp/infoGlobal.m_timeStep;
|
||
|
}
|
||
|
|
||
|
btScalar penetrationImpulse = positionalError*solverConstraint.m_jacDiagABInv;
|
||
|
btScalar velocityImpulse = velocityError *solverConstraint.m_jacDiagABInv;
|
||
|
|
||
|
if (!infoGlobal.m_splitImpulse || (penetration > infoGlobal.m_splitImpulsePenetrationThreshold))
|
||
|
{
|
||
|
//combine position and velocity into rhs
|
||
|
solverConstraint.m_rhs = penetrationImpulse+velocityImpulse;
|
||
|
solverConstraint.m_rhsPenetration = 0.f;
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
//split position and velocity into rhs and m_rhsPenetration
|
||
|
solverConstraint.m_rhs = velocityImpulse;
|
||
|
solverConstraint.m_rhsPenetration = penetrationImpulse;
|
||
|
}
|
||
|
|
||
|
solverConstraint.m_cfm = 0.f;
|
||
|
solverConstraint.m_lowerLimit = 0;
|
||
|
solverConstraint.m_upperLimit = 1e10f;
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
btMultiBodySolverConstraint& btMultiBodyConstraintSolver::addMultiBodyFrictionConstraint(const btVector3& normalAxis,btPersistentManifold* manifold,int frictionIndex,btManifoldPoint& cp,btCollisionObject* colObj0,btCollisionObject* colObj1, btScalar relaxation, const btContactSolverInfo& infoGlobal, btScalar desiredVelocity, btScalar cfmSlip)
|
||
|
{
|
||
|
BT_PROFILE("addMultiBodyFrictionConstraint");
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyFrictionContactConstraints.expandNonInitializing();
|
||
|
solverConstraint.m_frictionIndex = frictionIndex;
|
||
|
bool isFriction = true;
|
||
|
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
|
||
|
btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
|
||
|
btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
|
||
|
|
||
|
int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
|
||
|
int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
|
||
|
|
||
|
solverConstraint.m_solverBodyIdA = solverBodyIdA;
|
||
|
solverConstraint.m_solverBodyIdB = solverBodyIdB;
|
||
|
solverConstraint.m_multiBodyA = mbA;
|
||
|
if (mbA)
|
||
|
solverConstraint.m_linkA = fcA->m_link;
|
||
|
|
||
|
solverConstraint.m_multiBodyB = mbB;
|
||
|
if (mbB)
|
||
|
solverConstraint.m_linkB = fcB->m_link;
|
||
|
|
||
|
solverConstraint.m_originalContactPoint = &cp;
|
||
|
|
||
|
setupMultiBodyContactConstraint(solverConstraint, normalAxis, cp, infoGlobal,relaxation,isFriction, desiredVelocity, cfmSlip);
|
||
|
return solverConstraint;
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::convertMultiBodyContact(btPersistentManifold* manifold,const btContactSolverInfo& infoGlobal)
|
||
|
{
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
|
||
|
btMultiBody* mbA = fcA? fcA->m_multiBody : 0;
|
||
|
btMultiBody* mbB = fcB? fcB->m_multiBody : 0;
|
||
|
|
||
|
btCollisionObject* colObj0=0,*colObj1=0;
|
||
|
|
||
|
colObj0 = (btCollisionObject*)manifold->getBody0();
|
||
|
colObj1 = (btCollisionObject*)manifold->getBody1();
|
||
|
|
||
|
int solverBodyIdA = mbA? -1 : getOrInitSolverBody(*colObj0,infoGlobal.m_timeStep);
|
||
|
int solverBodyIdB = mbB ? -1 : getOrInitSolverBody(*colObj1,infoGlobal.m_timeStep);
|
||
|
|
||
|
btSolverBody* solverBodyA = mbA ? 0 : &m_tmpSolverBodyPool[solverBodyIdA];
|
||
|
btSolverBody* solverBodyB = mbB ? 0 : &m_tmpSolverBodyPool[solverBodyIdB];
|
||
|
|
||
|
|
||
|
///avoid collision response between two static objects
|
||
|
// if (!solverBodyA || (solverBodyA->m_invMass.isZero() && (!solverBodyB || solverBodyB->m_invMass.isZero())))
|
||
|
// return;
|
||
|
|
||
|
int rollingFriction=1;
|
||
|
|
||
|
for (int j=0;j<manifold->getNumContacts();j++)
|
||
|
{
|
||
|
|
||
|
btManifoldPoint& cp = manifold->getContactPoint(j);
|
||
|
|
||
|
if (cp.getDistance() <= manifold->getContactProcessingThreshold())
|
||
|
{
|
||
|
|
||
|
btScalar relaxation;
|
||
|
|
||
|
int frictionIndex = m_multiBodyNormalContactConstraints.size();
|
||
|
|
||
|
btMultiBodySolverConstraint& solverConstraint = m_multiBodyNormalContactConstraints.expandNonInitializing();
|
||
|
|
||
|
btRigidBody* rb0 = btRigidBody::upcast(colObj0);
|
||
|
btRigidBody* rb1 = btRigidBody::upcast(colObj1);
|
||
|
solverConstraint.m_solverBodyIdA = solverBodyIdA;
|
||
|
solverConstraint.m_solverBodyIdB = solverBodyIdB;
|
||
|
solverConstraint.m_multiBodyA = mbA;
|
||
|
if (mbA)
|
||
|
solverConstraint.m_linkA = fcA->m_link;
|
||
|
|
||
|
solverConstraint.m_multiBodyB = mbB;
|
||
|
if (mbB)
|
||
|
solverConstraint.m_linkB = fcB->m_link;
|
||
|
|
||
|
solverConstraint.m_originalContactPoint = &cp;
|
||
|
|
||
|
bool isFriction = false;
|
||
|
setupMultiBodyContactConstraint(solverConstraint, cp.m_normalWorldOnB,cp, infoGlobal, relaxation, isFriction);
|
||
|
|
||
|
// const btVector3& pos1 = cp.getPositionWorldOnA();
|
||
|
// const btVector3& pos2 = cp.getPositionWorldOnB();
|
||
|
|
||
|
/////setup the friction constraints
|
||
|
#define ENABLE_FRICTION
|
||
|
#ifdef ENABLE_FRICTION
|
||
|
solverConstraint.m_frictionIndex = frictionIndex;
|
||
|
#if ROLLING_FRICTION
|
||
|
btVector3 angVelA(0,0,0),angVelB(0,0,0);
|
||
|
if (rb0)
|
||
|
angVelA = rb0->getAngularVelocity();
|
||
|
if (rb1)
|
||
|
angVelB = rb1->getAngularVelocity();
|
||
|
btVector3 relAngVel = angVelB-angVelA;
|
||
|
|
||
|
if ((cp.m_combinedRollingFriction>0.f) && (rollingFriction>0))
|
||
|
{
|
||
|
//only a single rollingFriction per manifold
|
||
|
rollingFriction--;
|
||
|
if (relAngVel.length()>infoGlobal.m_singleAxisRollingFrictionThreshold)
|
||
|
{
|
||
|
relAngVel.normalize();
|
||
|
applyAnisotropicFriction(colObj0,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,relAngVel,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
if (relAngVel.length()>0.001)
|
||
|
addRollingFrictionConstraint(relAngVel,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
addRollingFrictionConstraint(cp.m_normalWorldOnB,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
btVector3 axis0,axis1;
|
||
|
btPlaneSpace1(cp.m_normalWorldOnB,axis0,axis1);
|
||
|
applyAnisotropicFriction(colObj0,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,axis0,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj0,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,axis1,btCollisionObject::CF_ANISOTROPIC_ROLLING_FRICTION);
|
||
|
if (axis0.length()>0.001)
|
||
|
addRollingFrictionConstraint(axis0,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
if (axis1.length()>0.001)
|
||
|
addRollingFrictionConstraint(axis1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
|
||
|
}
|
||
|
}
|
||
|
#endif //ROLLING_FRICTION
|
||
|
|
||
|
///Bullet has several options to set the friction directions
|
||
|
///By default, each contact has only a single friction direction that is recomputed automatically very frame
|
||
|
///based on the relative linear velocity.
|
||
|
///If the relative velocity it zero, it will automatically compute a friction direction.
|
||
|
|
||
|
///You can also enable two friction directions, using the SOLVER_USE_2_FRICTION_DIRECTIONS.
|
||
|
///In that case, the second friction direction will be orthogonal to both contact normal and first friction direction.
|
||
|
///
|
||
|
///If you choose SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION, then the friction will be independent from the relative projected velocity.
|
||
|
///
|
||
|
///The user can manually override the friction directions for certain contacts using a contact callback,
|
||
|
///and set the cp.m_lateralFrictionInitialized to true
|
||
|
///In that case, you can set the target relative motion in each friction direction (cp.m_contactMotion1 and cp.m_contactMotion2)
|
||
|
///this will give a conveyor belt effect
|
||
|
///
|
||
|
if (!(infoGlobal.m_solverMode & SOLVER_ENABLE_FRICTION_DIRECTION_CACHING) || !cp.m_lateralFrictionInitialized)
|
||
|
{/*
|
||
|
cp.m_lateralFrictionDir1 = vel - cp.m_normalWorldOnB * rel_vel;
|
||
|
btScalar lat_rel_vel = cp.m_lateralFrictionDir1.length2();
|
||
|
if (!(infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION) && lat_rel_vel > SIMD_EPSILON)
|
||
|
{
|
||
|
cp.m_lateralFrictionDir1 *= 1.f/btSqrt(lat_rel_vel);
|
||
|
if((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
cp.m_lateralFrictionDir2 = cp.m_lateralFrictionDir1.cross(cp.m_normalWorldOnB);
|
||
|
cp.m_lateralFrictionDir2.normalize();//??
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
|
||
|
}
|
||
|
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,solverBodyIdA,solverBodyIdB,frictionIndex,cp,rel_pos1,rel_pos2,colObj0,colObj1, relaxation);
|
||
|
|
||
|
} else
|
||
|
*/
|
||
|
{
|
||
|
btPlaneSpace1(cp.m_normalWorldOnB,cp.m_lateralFrictionDir1,cp.m_lateralFrictionDir2);
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
{
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir2,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
|
||
|
}
|
||
|
|
||
|
applyAnisotropicFriction(colObj0,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
applyAnisotropicFriction(colObj1,cp.m_lateralFrictionDir1,btCollisionObject::CF_ANISOTROPIC_FRICTION);
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal);
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS) && (infoGlobal.m_solverMode & SOLVER_DISABLE_VELOCITY_DEPENDENT_FRICTION_DIRECTION))
|
||
|
{
|
||
|
cp.m_lateralFrictionInitialized = true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} else
|
||
|
{
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir1,manifold,frictionIndex,cp,colObj0,colObj1, relaxation,infoGlobal,cp.m_contactMotion1, cp.m_contactCFM1);
|
||
|
|
||
|
if ((infoGlobal.m_solverMode & SOLVER_USE_2_FRICTION_DIRECTIONS))
|
||
|
addMultiBodyFrictionConstraint(cp.m_lateralFrictionDir2,manifold,frictionIndex,cp,colObj0,colObj1, relaxation, infoGlobal,cp.m_contactMotion2, cp.m_contactCFM2);
|
||
|
|
||
|
//setMultiBodyFrictionConstraintImpulse( solverConstraint, solverBodyIdA, solverBodyIdB, cp, infoGlobal);
|
||
|
//todo:
|
||
|
solverConstraint.m_appliedImpulse = 0.f;
|
||
|
solverConstraint.m_appliedPushImpulse = 0.f;
|
||
|
}
|
||
|
|
||
|
|
||
|
#endif //ENABLE_FRICTION
|
||
|
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void btMultiBodyConstraintSolver::convertContacts(btPersistentManifold** manifoldPtr,int numManifolds, const btContactSolverInfo& infoGlobal)
|
||
|
{
|
||
|
btPersistentManifold* manifold = 0;
|
||
|
|
||
|
for (int i=0;i<numManifolds;i++)
|
||
|
{
|
||
|
btPersistentManifold* manifold= manifoldPtr[i];
|
||
|
const btMultiBodyLinkCollider* fcA = btMultiBodyLinkCollider::upcast(manifold->getBody0());
|
||
|
const btMultiBodyLinkCollider* fcB = btMultiBodyLinkCollider::upcast(manifold->getBody1());
|
||
|
if (!fcA && !fcB)
|
||
|
{
|
||
|
//the contact doesn't involve any Featherstone btMultiBody, so deal with the regular btRigidBody/btCollisionObject case
|
||
|
convertContact(manifold,infoGlobal);
|
||
|
} else
|
||
|
{
|
||
|
convertMultiBodyContact(manifold,infoGlobal);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//also convert the multibody constraints, if any
|
||
|
|
||
|
|
||
|
for (int i=0;i<m_tmpNumMultiBodyConstraints;i++)
|
||
|
{
|
||
|
btMultiBodyConstraint* c = m_tmpMultiBodyConstraints[i];
|
||
|
m_data.m_solverBodyPool = &m_tmpSolverBodyPool;
|
||
|
m_data.m_fixedBodyId = m_fixedBodyId;
|
||
|
|
||
|
c->createConstraintRows(m_multiBodyNonContactConstraints,m_data, infoGlobal);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
btScalar btMultiBodyConstraintSolver::solveGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
|
||
|
{
|
||
|
return btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
|
||
|
}
|
||
|
|
||
|
|
||
|
void btMultiBodyConstraintSolver::solveMultiBodyGroup(btCollisionObject** bodies,int numBodies,btPersistentManifold** manifold,int numManifolds,btTypedConstraint** constraints,int numConstraints,btMultiBodyConstraint** multiBodyConstraints, int numMultiBodyConstraints, const btContactSolverInfo& info, btIDebugDraw* debugDrawer,btDispatcher* dispatcher)
|
||
|
{
|
||
|
//printf("solveMultiBodyGroup start\n");
|
||
|
m_tmpMultiBodyConstraints = multiBodyConstraints;
|
||
|
m_tmpNumMultiBodyConstraints = numMultiBodyConstraints;
|
||
|
|
||
|
btSequentialImpulseConstraintSolver::solveGroup(bodies,numBodies,manifold,numManifolds,constraints,numConstraints,info,debugDrawer,dispatcher);
|
||
|
|
||
|
m_tmpMultiBodyConstraints = 0;
|
||
|
m_tmpNumMultiBodyConstraints = 0;
|
||
|
|
||
|
|
||
|
}
|