merge anim change with fix tiles

This commit is contained in:
lanariel 2014-02-27 11:05:12 +01:00
commit a8fe18d98b
5 changed files with 417 additions and 258 deletions

View File

@ -184,7 +184,8 @@ namespace Oyster
Model::Model* m = new Model::Model();
m->WorldMatrix = Oyster::Math::Float4x4::identity;
m->Visible = true;
m->Animation.AnimationPlaying = NULL;
m->Animation[0].AnimationPlaying = nullptr;
m->Animation[1].AnimationPlaying = nullptr;
m->Tint = Math::Float3(1);
m->GlowTint = Math::Float3(1);
m->Instanced = true;
@ -341,14 +342,20 @@ namespace Oyster
Core::loader.ReleaseResource(tex);
}
float API::PlayAnimation(Model::Model* m, std::wstring name,bool looping)
float API::PlayAnimation( Model::Model* m, const std::wstring &name, bool looping )
{
if(m==NULL)
return 0;
m->Animation.AnimationPlaying = &(*m->info->Animations.find(name)).second;
m->Animation.AnimationTime=0;
m->Animation.LoopAnimation = looping;
return (float)m->Animation.AnimationPlaying->duration;
if( m )
{ // nasty temp solution by Dan
static int fairSlotLooper = 0;
fairSlotLooper = (fairSlotLooper + 1) & 3; // same as n % 2
m->Animation[fairSlotLooper].AnimationPlaying = &(*m->info->Animations.find(name)).second;
m->Animation[fairSlotLooper].AnimationTime=0;
m->Animation[fairSlotLooper].LoopAnimation = looping;
return (float)m->Animation[fairSlotLooper].AnimationPlaying->duration;
}
return 0;
}
void API::Update(float dt)

View File

@ -113,7 +113,7 @@ namespace Oyster
static Option GetOption();
//! @brief Starts an animation and returns the time of the animation
static float PlayAnimation(Model::Model* model, std::wstring name, bool looping = false);
static float PlayAnimation(Model::Model* model, const std::wstring &name, bool looping = false);
//! @brief Moves all animating models forward the specified time;
static void Update(float deltaTime);

View File

@ -19,6 +19,7 @@ namespace Oyster
float AnimationTime;
bool LoopAnimation;
};
struct Model
{
ModelInfo* info;
@ -27,10 +28,9 @@ namespace Oyster
Oyster::Math::Float3 GlowTint;
bool Visible;
bool Instanced;
AnimationData Animation;
AnimationData Animation[2];
};
}
};
};

View File

@ -17,11 +17,13 @@ namespace Oyster
Math::Matrix Absolute;
int Parent;
};
struct Frame
{
Bone bone;
double time;
};
struct Animation
{
int Bones;
@ -29,6 +31,7 @@ namespace Oyster
Frame** Keyframes; //! @brief [Bone][Frame]
double duration;
};
struct ModelInfo
{
std::vector<ID3D11ShaderResourceView*> Material;

View File

@ -12,30 +12,61 @@ namespace Oyster
{
namespace Render
{
Definitions::Pointlight pl;
Definitions::Pointlight pl;
void DefaultRenderer::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights, float Fov)
{
Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(0,0,0,0));
Preparations::Basic::ClearDepthStencil(Resources::Gui::depth);
Preparations::Basic::ClearRTV(Resources::GBufferRTV,Resources::GBufferSize,Math::Float4(0,0,0,0));
Lights[1];
/********************************************************
* Private Prototype Methods
********************************************************/
void AnimateRelativeBones( const Model::ModelInfo &info, Model::AnimationData &anim, Math::Matrix relativeBuffer[] );
void MergeAnimatedBones
(
const Model::Bone raw[], int numBones, Math::Float interpolation, // comparable raw bone data and interpolation value
const Math::Matrix animatedBoneSourceA[], // relative bone animations
Math::Matrix animatedBoneSourceB_Target[] // relative bone animations and targetbuffer
);
int AnimateAbsoluteBones
(
const Model::ModelInfo &info, Math::Float deltaTime,
Model::AnimationData &anim,
Math::Matrix SkinTransformBuffer[],
Math::Matrix BoneAnimationBuffer_Relative[],
Math::Matrix BoneAnimationBuffer_Absolute[]
);
int AnimateAbsoluteBones
(
const Model::ModelInfo &info, Math::Float deltaTime,
Model::AnimationData anim[], int numAnimations,
Math::Matrix SkinTransformBuffer[],
Math::Matrix BoneAnimationBuffer_Relative[],
Math::Matrix BoneAnimationBuffer_Absolute[]
);
void* data;
/********************************************************
* Public Method Implementations
********************************************************/
Definitions::LightConstants lc;
lc.InvProj = Projection.GetInverse();
lc.FoV = Fov;
lc.Lights = numLights;
lc.View = View;
lc.Proj = Projection;
lc.SSAORadius = 3;
void DefaultRenderer::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights)
{
Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(0,0,0,0));
Preparations::Basic::ClearDepthStencil(Resources::Gui::depth);
Preparations::Basic::ClearRTV(Resources::GBufferRTV,Resources::GBufferSize,Math::Float4(0,0,0,0));
Lights[1];
data = Resources::Light::LightConstantsData.Map();
memcpy(data, &lc, sizeof(Definitions::LightConstants));
Resources::Light::LightConstantsData.Unmap();
void* data;
data = Resources::Light::PointLightsData.Map();
Definitions::LightConstants lc;
lc.InvProj = Projection.GetInverse();
lc.Pixels = Core::resolution;
lc.Lights = numLights;
lc.View = View;
lc.Proj = Projection;
lc.SSAORadius = 3;
data = Resources::Light::LightConstantsData.Map();
memcpy(data, &lc, sizeof(Definitions::LightConstants));
Resources::Light::LightConstantsData.Unmap();
data = Resources::Light::PointLightsData.Map();
Definitions::Pointlight* plData = (Definitions::Pointlight*)data;
for(int i=0; i < numLights; ++i)
{
@ -45,253 +76,371 @@ namespace Oyster
plData[i].Bright = Lights[i].Bright;
}
//memcpy(data, Lights, sizeof(Definitions::Pointlight) * numLights);
Resources::Light::PointLightsData.Unmap();
Resources::Light::PointLightsData.Unmap();
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
{
(*i).second->Models=0;
}
Core::PipelineManager::SetRenderPass(Resources::Gather::AnimatedPass);
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
{
(*i).second->Models=0;
}
void DefaultRenderer::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection, float deltaTime)
Core::PipelineManager::SetRenderPass(Resources::Gather::AnimatedPass);
}
void DefaultRenderer::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection, float deltaTime)
{
for(int i = 0; i < count; ++i)
{
for(int i = 0; i < count; ++i)
if(&models[i] == NULL || !models[i].Visible)
continue;
Model::ModelInfo* info = models[i].info;
if(!info->Animated && models[i].Instanced)
{
if(&models[i] == NULL || !models[i].Visible)
continue;
Definitions::RenderInstanceData rid;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
rid.WV = View * m;
rid.WVP = Projection * View * models[i].WorldMatrix;
Model::ModelInfo* info = models[i].info;
if(!info->Animated && models[i].Instanced)
{
Definitions::RenderInstanceData rid;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
rid.WV = View * m;
rid.WVP = Projection * View * models[i].WorldMatrix;
rid.Tint = models[i].Tint;
rid.GTint = models[i].GlowTint;
rid.Tint = models[i].Tint;
rid.GTint = models[i].GlowTint;
Resources::RenderData[info]->rid[Resources::RenderData[info]->Models++] = rid;
}
else
{
Definitions::PerModel pm;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
pm.WV = View * m;
pm.WVP = Projection * View * models[i].WorldMatrix;
Model::ModelInfo* info = models[i].info;
Definitions::AnimationData am; //final
if(info->Animated && models[i].Animation.AnimationPlaying != NULL)
{
models[i].Animation.AnimationTime += deltaTime;
////store inverse absolut transform
Math::Matrix SkinTransform[100];
Math::Matrix BoneAnimated[100];
Math::Matrix BoneAbsAnimated[100];
for(int b = 0; b <info->BoneCount; ++b)
{
Model::Bone Bone = info->bones[b];
SkinTransform[b] = Bone.Absolute.GetInverse();
BoneAnimated[b] = Bone.Relative;
BoneAbsAnimated[b] = Bone.Absolute;
}
int b = 0;
Model::Animation A = *models[i].Animation.AnimationPlaying;
while(models[i].Animation.AnimationTime>A.duration && models[i].Animation.LoopAnimation)
models[i].Animation.AnimationTime -= (float)A.duration;
float position = models[i].Animation.AnimationTime;
for(int b = 0; b < A.Bones;++b)
{
//find current frame
int nrOfFrames = A.Frames[b];
Model::Frame PFrame = A.Keyframes[b][nrOfFrames-1];
Model::Frame NFrame = A.Keyframes[b][nrOfFrames-1];
bool FrameFound = false;
for (int i = 0; i < nrOfFrames; i++)
{
if(position < A.Keyframes[b][i].time)
{
PFrame = A.Keyframes[b][i-1];
NFrame = A.Keyframes[b][i];
break;
}
}
float denominator = (float)(NFrame.time - PFrame.time);
if(denominator == 0)
{
BoneAnimated[PFrame.bone.Parent] = PFrame.bone.Relative;
continue;
}
float inter = (float)((position - PFrame.time) / denominator);
Math3D::InterpolateOrientation_UsingNonRigidNlerp(PFrame.bone.Relative,NFrame.bone.Relative,inter, BoneAnimated[PFrame.bone.Parent]);
}
////calculate Absolute Animation Transform
for(int b = 0; b < info->BoneCount; ++b)
{
BoneAbsAnimated[b] = BoneAbsAnimated[info->bones[b].Parent] * BoneAnimated[b];
}
//write data to am
for(int b = 0; b < info->BoneCount; ++b)
{
am.AnimatedData[b] = (BoneAbsAnimated[b] * SkinTransform[b]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy(data,&am,sizeof(Definitions::AnimationData));
Resources::Gather::AnimationData.Unmap();
pm.Animated = 1;
}
else
pm.Animated = 0;
void* data = Resources::Gather::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Gather::ModelData.Unmap();
Definitions::TintData td;
td.GlowTint = models[i].GlowTint;
td.Tint = models[i].Tint;
td.PAD = 0;
td.PAD2 = 0;
int s = sizeof(Definitions::TintData);
data = Render::Resources::Color.Map();
memcpy(data,&td,sizeof(Definitions::TintData));
Render::Resources::Color.Unmap();
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0);
}
}
}
}
void BlurGlow()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(1,1,1,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y;
bd.StartX = 0;
bd.StartY = (UINT)Core::resolution.y/2;
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void BlurSSAO()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(0,0,0,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y/2;
bd.StartX = 0;
bd.StartY = 0;
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void RenderModel(Model::ModelInfo* info, Definitions::RenderInstanceData* rid , int count)
{
if(count < 1)
return;
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
}
void* data = Resources::Gather::InstancedData.Map();
memcpy(data, rid, sizeof(Definitions::RenderInstanceData)*count);
Resources::Gather::InstancedData.Unmap();
if(info->Indexed)
{
Core::deviceContext->DrawIndexedInstanced(info->IndexCount,count,0,0,0);
//Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
Resources::RenderData[info]->rid[Resources::RenderData[info]->Models++] = rid;
}
else
{
Core::deviceContext->DrawInstanced(info->VertexCount,count,0,0);
//Core::deviceContext->Draw(info->VertexCount,0);
Definitions::PerModel pm;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
pm.WV = View * m;
pm.WVP = Projection * View * models[i].WorldMatrix;
Model::ModelInfo* info = models[i].info;
// Bone animation buffers
Math::Matrix SkinTransform[100];
Math::Matrix BoneAnimated[100];
Math::Matrix BoneAbsAnimated[100];
pm.Animated = AnimateAbsoluteBones
(
*info, deltaTime,
models[i].Animation,
::Utility::StaticArray::NumElementsOf( models[i].Animation ),
SkinTransform, BoneAnimated, BoneAbsAnimated
);
void* data = Resources::Gather::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Gather::ModelData.Unmap();
Definitions::TintData td;
td.GlowTint = models[i].GlowTint;
td.Tint = models[i].Tint;
td.PAD = 0;
td.PAD2 = 0;
int s = sizeof(Definitions::TintData);
data = Render::Resources::Color.Map();
memcpy(data,&td,sizeof(Definitions::TintData));
Render::Resources::Color.Unmap();
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0);
}
}
}
}
void BlurGlow()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(1,1,1,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y;
bd.StartX = 0;
bd.StartY = (UINT)Core::resolution.y/2;
void DefaultRenderer::EndFrame()
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void BlurSSAO()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(0,0,0,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y/2;
bd.StartX = 0;
bd.StartY = 0;
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void RenderModel(Model::ModelInfo* info, Definitions::RenderInstanceData* rid , int count)
{
if(count < 1)
return;
if(info->Material.size())
{
Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Gather::InstancedPass);
Resources::Gather::InstancedData.Apply(1);
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
}
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
void* data = Resources::Gather::InstancedData.Map();
memcpy(data, rid, sizeof(Definitions::RenderInstanceData)*count);
Resources::Gather::InstancedData.Unmap();
if(info->Indexed)
{
Core::deviceContext->DrawIndexedInstanced(info->IndexCount,count,0,0,0);
//Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Core::deviceContext->DrawInstanced(info->VertexCount,count,0,0);
//Core::deviceContext->Draw(info->VertexCount,0);
}
}
void DefaultRenderer::EndFrame()
{
Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Gather::InstancedPass);
Resources::Gather::InstancedData.Apply(1);
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
{
RenderModel((*i).first,(*i).second->rid, (*i).second->Models);
}
Core::PipelineManager::SetRenderPass(Resources::Light::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
BlurGlow();
BlurSSAO();
Core::PipelineManager::SetRenderPass(Resources::Post::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::swapChain->Present(0,0);
}
/********************************************************
* Private Prototype Method Implementations
********************************************************/
void AnimateRelativeBones( const Model::ModelInfo &info, Model::AnimationData &anim, Math::Matrix relativeBuffer[] )
{
for( int i = 0; i < info.BoneCount; ++i )
{
Model::Bone Bone = info.bones[i];
relativeBuffer[i] = Bone.Relative;
}
const Model::Animation &A = *anim.AnimationPlaying;
while( anim.AnimationTime > A.duration && anim.LoopAnimation )
anim.AnimationTime -= (float)A.duration;
float position = anim.AnimationTime;
for( int i = 0; i < A.Bones; ++i )
{
//find current frame
int nrOfFrames = A.Frames[i];
Model::Frame PFrame = A.Keyframes[i][nrOfFrames-1];
Model::Frame NFrame = A.Keyframes[i][nrOfFrames-1];
bool FrameFound = false;
for (int j = 0; j < nrOfFrames; j++)
{
RenderModel((*i).first,(*i).second->rid, (*i).second->Models);
if(position < A.Keyframes[i][j].time)
{
PFrame = A.Keyframes[i][j-1];
NFrame = A.Keyframes[i][j];
break;
}
}
Core::PipelineManager::SetRenderPass(Resources::Light::Pass);
float denominator = (float)(NFrame.time - PFrame.time);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
BlurGlow();
BlurSSAO();
Core::PipelineManager::SetRenderPass(Resources::Post::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::swapChain->Present(0,0);
if( denominator != 0.0f )
{
float inter = (float)((position - PFrame.time) / denominator);
Math3D::InterpolateOrientation_UsingNonRigidNlerp( PFrame.bone.Relative,NFrame.bone.Relative, inter, relativeBuffer[PFrame.bone.Parent] );
}
else
{
relativeBuffer[PFrame.bone.Parent] = PFrame.bone.Relative;
}
}
}
enum Conflict
{
Conflict_detected,
Conflict_useA,
Conflict_useB
};
Conflict DetectBoneAnimationConflict( const Model::Bone &raw, const Math::Matrix &animBoneA, const Math::Matrix &animBoneB );
void MergeAnimatedBones( const Model::Bone raw[], int numBones, Math::Float interpolation, const Math::Matrix *animatedBoneSourceA, Math::Matrix animatedBoneSourceB_Target[] )
{
for( int i = 0; i < numBones; ++i )
{
switch( DetectBoneAnimationConflict(raw[i], animatedBoneSourceA[i], animatedBoneSourceB_Target[i]) )
{
case Conflict_detected:
Math3D::InterpolateOrientation_UsingNonRigidNlerp( animatedBoneSourceA[i], animatedBoneSourceB_Target[i], interpolation, animatedBoneSourceB_Target[i] );
break;
case Conflict_useA:
animatedBoneSourceB_Target[i] = animatedBoneSourceA[i];
break;
default: case Conflict_useB: break;
}
}
}
Conflict DetectBoneAnimationConflict( const Model::Bone &raw, const Math::Matrix &animBoneA, const Math::Matrix &animBoneB )
{
if( animBoneA == raw.Relative )
return Conflict_useB;
if( animBoneB == raw.Relative )
return Conflict_useA;
return Conflict_detected;
}
int AnimateAbsoluteBones( const Model::ModelInfo &info, Math::Float deltaTime, Model::AnimationData &anim, Math::Matrix SkinTransformBuffer[], Math::Matrix BoneAnimationBuffer_Relative[], Math::Matrix BoneAnimationBuffer_Absolute[] )
{
if( !info.Animated || (anim.AnimationPlaying == nullptr) )
{ // no animation
return 0;
}
anim.AnimationTime += deltaTime;
AnimateRelativeBones( info, anim, BoneAnimationBuffer_Relative );
for( int i = 0; i < info.BoneCount; ++i )
{
Model::Bone Bone = info.bones[i];
SkinTransformBuffer[i] = Bone.Absolute.GetInverse();
BoneAnimationBuffer_Absolute[i] = Bone.Absolute;
}
Definitions::AnimationData am;
for( int i = 0; i < info.BoneCount; ++i )
{
//calculate Absolute Animation Transform
BoneAnimationBuffer_Absolute[i] = BoneAnimationBuffer_Absolute[info.bones[i].Parent] * BoneAnimationBuffer_Relative[i];
//write data to am
am.AnimatedData[i] = (BoneAnimationBuffer_Absolute[i] * SkinTransformBuffer[i]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy( data, &am, sizeof(Definitions::AnimationData) );
Resources::Gather::AnimationData.Unmap();
return 1;
}
int AnimateAbsoluteBones( const Model::ModelInfo &info, Math::Float deltaTime, Model::AnimationData anim[], int numAnimations, Math::Matrix SkinTransformBuffer[], Math::Matrix BoneAnimationBuffer_Relative[], Math::Matrix BoneAnimationBuffer_Absolute[] )
{
if( !info.Animated || (numAnimations < 1) )
{ // no animation
return 0;
}
int isAnimated = 0;
// for each animation
for( int i = 0; i < numAnimations; ++i )
{
if( anim[i].AnimationPlaying != nullptr )
{
anim[i].AnimationTime += deltaTime;
if( isAnimated )
{
AnimateRelativeBones( info, anim[i], BoneAnimationBuffer_Absolute ); // Borrowing BoneAnimationBuffer_Absolute as interim buffer
MergeAnimatedBones( info.bones, info.BoneCount, 0.5f, BoneAnimationBuffer_Absolute, BoneAnimationBuffer_Relative );
}
else
{
isAnimated = 1;
AnimateRelativeBones( info, anim[i], BoneAnimationBuffer_Relative );
}
}
}
if( isAnimated )
{
for( int i = 0; i < info.BoneCount; ++i )
{
Model::Bone Bone = info.bones[i];
SkinTransformBuffer[i] = Bone.Absolute.GetInverse();
BoneAnimationBuffer_Absolute[i] = Bone.Absolute;
}
Definitions::AnimationData am;
for( int i = 0; i < info.BoneCount; ++i )
{
//calculate Absolute Animation Transform
BoneAnimationBuffer_Absolute[i] = BoneAnimationBuffer_Absolute[info.bones[i].Parent] * BoneAnimationBuffer_Relative[i];
//write data to am
am.AnimatedData[i] = (BoneAnimationBuffer_Absolute[i] * SkinTransformBuffer[i]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy( data, &am, sizeof(Definitions::AnimationData) );
Resources::Gather::AnimationData.Unmap();
}
return isAnimated;
}
}
}
}