Merge remote-tracking branch 'origin/GameClient' into PlayerRunEdits

Conflicts:
	Code/Game/GameClient/DanBiasGame_Impl.cpp
This commit is contained in:
Dander7BD 2014-02-27 12:47:26 +01:00
commit ee54ce5d73
22 changed files with 597 additions and 366 deletions

View File

@ -40,7 +40,7 @@ namespace DanBias
{
public:
WindowShell* window;
Utility::WinTimer timer;
Utility::WinTimer timer, graphicalTimer;
UniquePointer<Client::GameClientState> state;
NetworkClient networkClient;
@ -130,7 +130,7 @@ namespace DanBias
Graphics::API::Update( data.capFrame );
if(Render() != S_OK)
return DanBiasClientReturn_Error;
data.capFrame -= 0.03f;
data.capFrame = 0.0f;
}
if(data.networkClient.IsConnected())
@ -153,11 +153,14 @@ namespace DanBias
Oyster::Graphics::API::Option p;
p.modelPath = L"..\\Content\\Models\\";
p.texturePath = L"..\\Content\\Textures\\";
p.Resolution = Oyster::Math::Float2( 1280.0f, 720.0f );
p.resolution = Oyster::Math::Float2( 1920.0f, 1080.0f );
//! @todo fix proper amb value
p.AmbientValue = 1.3f;
p.ambientValue = 0.3f;
p.globalGlowTint = Math::Float3(1);
p.globalTint = Math::Float3(1);
p.fullscreen = false;
if(Oyster::Graphics::API::Init(data.window->GetHWND(), false, false, p) != Oyster::Graphics::API::Sucsess)
if(Oyster::Graphics::API::Init(data.window->GetHWND(), false, p) != Oyster::Graphics::API::Sucsess)
return E_FAIL;
return S_OK;
}

View File

@ -75,13 +75,10 @@ bool GameState::Init( SharedStateContent &shared )
this->privData->lights = &shared.lights;
Graphics::API::Option gfxOp = Graphics::API::GetOption();
Float aspectRatio = gfxOp.Resolution.x / gfxOp.Resolution.y;
this->privData->camera.SetPerspectiveProjection( Utility::Value::Radian(90.0f), aspectRatio, 0.1f, 1000.0f );
Float aspectRatio = gfxOp.resolution.x / gfxOp.resolution.y;
this->privData->camera.SetPerspectiveProjection( Utility::Value::Radian(90.0f), aspectRatio, 0.5f, 1000.0f );
Graphics::API::SetProjection( this->privData->camera.GetProjectionMatrix() );
gfxOp.AmbientValue = 0.5f;
gfxOp.GlobalGlowTint = Math::Float3(1,1,1);
gfxOp.GlobalTint = Math::Float3(1,1,1);
Graphics::API::SetOptions(gfxOp);
// DEGUG KEYS
this->key_Reload_Shaders = false;

View File

@ -45,6 +45,7 @@ namespace DanBias
static DanBiasClientReturn Initiate(DanBiasGameDesc& desc);
static DanBiasClientReturn Run();
static void Release();
static HRESULT Render();
private:
enum Result
@ -58,7 +59,6 @@ namespace DanBias
static HRESULT InitInput( HWND handle );
static Result Update(float deltaTime);
static HRESULT Render();
static HRESULT CleanUp();
};

View File

@ -74,7 +74,7 @@ void Player::initPlayerData()
void Player::BeginFrame()
{
if( this->playerState & (PLAYER_STATE_DEAD | PLAYER_STATE_DIED) )
if( !(this->playerState & (PLAYER_STATE_DEAD | PLAYER_STATE_DIED)) )
{
static const Float maxSpeed = 30.0f;

View File

@ -32,7 +32,7 @@ int WINAPI WinMain( HINSTANCE hinst, HINSTANCE prevInst, PSTR cmdLine, int cmdSh
GameServerAPI::GameSetGameMode(L"free-for-all");
GameServerAPI::GameSetGameName(L"DebugServer");
GameServerAPI::GameSetGameTime(15);
GameServerAPI::GameSetMapName(L"erik_250.bias");
GameServerAPI::GameSetMapName(L"manyLights.bias");
GameServerAPI::GameSetMaxClients(10);
if(GameServerAPI::GameStart(true))

View File

@ -78,7 +78,7 @@ inline ::LinearAlgebra::Vector4<ScalarType> operator * ( const ::LinearAlgebra::
{
return ::LinearAlgebra::Vector4<ScalarType>( (matrix.m11 * vector.x) + (matrix.m12 * vector.y) + (matrix.m13 * vector.z) + (matrix.m14 * vector.w),
(matrix.m21 * vector.x) + (matrix.m22 * vector.y) + (matrix.m23 * vector.z) + (matrix.m24 * vector.w),
(matrix.m23 * vector.x) + (matrix.m32 * vector.y) + (matrix.m33 * vector.z) + (matrix.m34 * vector.w),
(matrix.m31 * vector.x) + (matrix.m32 * vector.y) + (matrix.m33 * vector.z) + (matrix.m34 * vector.w),
(matrix.m41 * vector.x) + (matrix.m42 * vector.y) + (matrix.m43 * vector.z) + (matrix.m44 * vector.w) );
}

View File

@ -36,3 +36,7 @@ ID3D11RenderTargetView* Core::rtvNULL[8] = {0};
ID3D11UnorderedAccessView* Core::uavNULL[8] = {0};
int Core::UsedMem = 0;
HWND Core::window = 0;
bool Core::fullscreen = false;

View File

@ -40,7 +40,8 @@ namespace Oyster
//ViewPort
static D3D11_VIEWPORT* viewPort;
static Oyster::Math::Float2 resolution;
static Oyster::Math::Float2 resolution;
static bool fullscreen;
static ID3D11ShaderResourceView* srvNULL[16];
static ID3D11RenderTargetView* rtvNULL[8];
@ -48,6 +49,8 @@ namespace Oyster
static int UsedMem;
static HWND window;
class Buffer
{
public:
@ -250,11 +253,12 @@ namespace Oyster
static State FullInit(HWND Window, bool MSAA_Quality, bool Fullscreen);
static State ReInitialize(HWND Window, bool MSAA_Quality, bool Fullscreen);
static State ReInitialize(bool MSAA_Quality, bool Fullscreen, Math::Float2 Size);
static State CreateLinkedShaderResourceFromTexture(ID3D11RenderTargetView** rtv, ID3D11ShaderResourceView** srv, ID3D11UnorderedAccessView** uav);
static State CreateLinkedShaderResourceFromStructuredBuffer(Buffer** Structured, ID3D11ShaderResourceView** srv, ID3D11UnorderedAccessView** uav);
static State CreateLinkedShaderResourceFromStructuredBuffer(void* InitData, int numElem, int ElemSize, Buffer** Structured, ID3D11ShaderResourceView** srv, ID3D11UnorderedAccessView** uav);
};

View File

@ -110,7 +110,7 @@ namespace Oyster
if(Core::swapChain)
{
Core::swapChain->Release();
Core::UsedMem -= desc.BufferDesc.Height * desc.BufferDesc.Width * 16;
Core::UsedMem -= Core::resolution.x * Core::resolution.y * 4;
delete Core::swapChain;
}
@ -168,7 +168,7 @@ namespace Oyster
}
dxgiFactory->Release();
Core::UsedMem += desc.BufferDesc.Height * desc.BufferDesc.Width * 16;
Core::UsedMem += desc.BufferDesc.Height * desc.BufferDesc.Width * 4;
return Init::Success;
}
@ -188,7 +188,7 @@ namespace Oyster
if(Core::depthStencil)
{
Core::depthStencil->Release();
Core::UsedMem -= desc.Height * desc.Width * 4;
Core::UsedMem -= Core::resolution.x * Core::resolution.y * 4;
delete Core::depthStencil;
}
@ -327,12 +327,16 @@ namespace Oyster
return Init::Fail;
}
Core::window = Window;
Core::fullscreen = Fullscreen;
return Init::Success;
}
Core::Init::State Core::Init::ReInitialize(HWND Window, bool MSAA_Quality, bool Fullscreen)
Core::Init::State Core::Init::ReInitialize(bool MSAA_Quality, bool Fullscreen, Math::Float2 Size)
{
if(Init::CreateSwapChain(Window, 1, MSAA_Quality, Fullscreen, Core::resolution) == Init::Fail)
if(Init::CreateSwapChain(Core::window, 1, MSAA_Quality, Fullscreen, Size) == Init::Fail)
{
return Init::Fail;
}

View File

@ -35,9 +35,10 @@ namespace Oyster
{
Math::Float4x4 InvProj;
Math::Float4x4 Proj;
Math::Float2 Pixels;
float FoV;
int Lights;
float SSAORadius;
float pad;
Oyster::Math::Float4x4 View;
};

View File

@ -20,6 +20,7 @@ namespace Oyster
std::vector<Definitions::Pointlight> Lights;
float deltaTime;
int MostModel;
float FoV;
#ifdef _DEBUG
Model::Model* cube;
Model::Model* sphere;
@ -30,13 +31,14 @@ namespace Oyster
#endif
}
API::State API::Init(HWND Window, bool MSAA_Quality, bool Fullscreen, API::Option o)
API::State API::Init(HWND Window, bool MSAA_Quality, API::Option o)
{
Core::resolution = o.Resolution;
Core::resolution = o.resolution;
Core::modelPath = o.modelPath;
Core::texturePath = o.texturePath;
Core::fullscreen = o.fullscreen;
if(Core::Init::FullInit(Window, MSAA_Quality, Fullscreen) == Core::Init::Fail)
if(Core::Init::FullInit(Window, MSAA_Quality, o.fullscreen) == Core::Init::Fail)
{
return API::Fail;
}
@ -44,7 +46,9 @@ namespace Oyster
Render::Resources::Init();
Definitions::PostData pd;
pd.Amb = o.AmbientValue;
pd.Amb = o.ambientValue;
pd.GlowTint = o.globalGlowTint;
pd.Tint = o.globalTint;
void* data = Render::Resources::Post::Data.Map();
memcpy(data,&pd,sizeof(Definitions::PostData));
@ -85,6 +89,7 @@ namespace Oyster
void API::SetProjection(const Math::Float4x4& projection)
{
Projection = projection;
FoV = 2 * std::atanf(1/projection.m[1][1]);
}
void API::SetView(const Math::Float4x4& view)
@ -96,11 +101,11 @@ namespace Oyster
{
if(Lights.size())
{
Render::DefaultRenderer::NewFrame(View, Projection, &Lights[0], (int)Lights.size());
Render::DefaultRenderer::NewFrame(View, Projection, &Lights[0], (int)Lights.size(), FoV);
}
else
{
Render::DefaultRenderer::NewFrame(View, Projection, NULL, 0);
Render::DefaultRenderer::NewFrame(View, Projection, NULL, 0, FoV);
}
}
@ -125,14 +130,22 @@ namespace Oyster
Core::texturePath = option.texturePath;
Definitions::PostData pd;
pd.Amb = option.AmbientValue;
pd.Tint = option.GlobalTint;
pd.GlowTint = option.GlobalGlowTint;
pd.Amb = option.ambientValue;
pd.Tint = option.globalTint;
pd.GlowTint = option.globalGlowTint;
void* data = Render::Resources::Post::Data.Map();
memcpy(data,&pd,sizeof(Definitions::PostData));
Render::Resources::Post::Data.Unmap();
if(option.resolution != Core::resolution || option.fullscreen != Core::fullscreen)
{
//RESIZE
Core::Init::ReInitialize(false,option.fullscreen,option.resolution);
Core::fullscreen = option.fullscreen;
Core::resolution = option.resolution;
}
return API::Sucsess;
}
@ -171,7 +184,8 @@ namespace Oyster
Model::Model* m = new Model::Model();
m->WorldMatrix = Oyster::Math::Float4x4::identity;
m->Visible = true;
m->Animation.AnimationPlaying = NULL;
m->Animation[0].AnimationPlaying = nullptr;
m->Animation[1].AnimationPlaying = nullptr;
m->Tint = Math::Float3(1);
m->GlowTint = Math::Float3(1);
m->Instanced = true;
@ -300,10 +314,11 @@ namespace Oyster
API::Option API::GetOption()
{
Option o;
o.BytesUsed = Core::UsedMem;
o.bytesUsed = Core::UsedMem;
o.modelPath = Core::modelPath;
o.texturePath = Core::texturePath;
o.Resolution = Core::resolution;
o.resolution = Core::resolution;
o.fullscreen = Core::fullscreen;
return o;
}
@ -327,14 +342,20 @@ namespace Oyster
Core::loader.ReleaseResource(tex);
}
float API::PlayAnimation(Model::Model* m, std::wstring name,bool looping)
float API::PlayAnimation( Model::Model* m, const std::wstring &name, bool looping )
{
if(m==NULL)
return 0;
m->Animation.AnimationPlaying = &(*m->info->Animations.find(name)).second;
m->Animation.AnimationTime=0;
m->Animation.LoopAnimation = looping;
return (float)m->Animation.AnimationPlaying->duration;
if( m )
{ // nasty temp solution by Dan
static int fairSlotLooper = 0;
fairSlotLooper = (fairSlotLooper + 1) & 3; // same as n % 2
m->Animation[fairSlotLooper].AnimationPlaying = &(*m->info->Animations.find(name)).second;
m->Animation[fairSlotLooper].AnimationTime=0;
m->Animation[fairSlotLooper].LoopAnimation = looping;
return (float)m->Animation[fairSlotLooper].AnimationPlaying->duration;
}
return 0;
}
void API::Update(float dt)

View File

@ -28,19 +28,21 @@ namespace Oyster
{
std::wstring modelPath, texturePath;
//between 0-1
float AmbientValue;
float ambientValue;
Math::Float3 GlobalTint;
Math::Float3 GlobalGlowTint;
Math::Float3 globalTint;
Math::Float3 globalGlowTint;
Math::Float2 Resolution;
Math::Float2 resolution;
//Bytes on the GPU
int BytesUsed;
int bytesUsed;
bool fullscreen;
};
typedef void* Texture;
static State Init(HWND Window, bool MSAA_Quality, bool Fullscreen, Option options);
static State Init(HWND Window, bool MSAA_Quality, Option options);
static void BeginLoadingModels();
@ -111,7 +113,7 @@ namespace Oyster
static Option GetOption();
//! @brief Starts an animation and returns the time of the animation
static float PlayAnimation(Model::Model* model, std::wstring name, bool looping = false);
static float PlayAnimation(Model::Model* model, const std::wstring &name, bool looping = false);
//! @brief Moves all animating models forward the specified time;
static void Update(float deltaTime);

View File

@ -19,6 +19,7 @@ namespace Oyster
float AnimationTime;
bool LoopAnimation;
};
struct Model
{
ModelInfo* info;
@ -27,10 +28,9 @@ namespace Oyster
Oyster::Math::Float3 GlowTint;
bool Visible;
bool Instanced;
AnimationData Animation;
AnimationData Animation[2];
};
}
};
};

View File

@ -17,11 +17,13 @@ namespace Oyster
Math::Matrix Absolute;
int Parent;
};
struct Frame
{
Bone bone;
double time;
};
struct Animation
{
int Bones;
@ -29,6 +31,7 @@ namespace Oyster
Frame** Keyframes; //! @brief [Bone][Frame]
double duration;
};
struct ModelInfo
{
std::vector<ID3D11ShaderResourceView*> Material;

View File

@ -12,278 +12,435 @@ namespace Oyster
{
namespace Render
{
Definitions::Pointlight pl;
Definitions::Pointlight pl;
void DefaultRenderer::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights)
{
Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(0,0,0,0));
Preparations::Basic::ClearDepthStencil(Resources::Gui::depth);
Preparations::Basic::ClearRTV(Resources::GBufferRTV,Resources::GBufferSize,Math::Float4(0,0,0,0));
Lights[1];
/********************************************************
* Private Prototype Methods
********************************************************/
void AnimateRelativeBones( const Model::ModelInfo &info, Model::AnimationData &anim, Math::Matrix relativeBuffer[] );
void MergeAnimatedBones
(
const Model::Bone raw[], int numBones, Math::Float interpolation, // comparable raw bone data and interpolation value
const Math::Matrix animatedBoneSourceA[], // relative bone animations
Math::Matrix animatedBoneSourceB_Target[] // relative bone animations and targetbuffer
);
int AnimateAbsoluteBones
(
const Model::ModelInfo &info, Math::Float deltaTime,
Model::AnimationData &anim,
Math::Matrix SkinTransformBuffer[],
Math::Matrix BoneAnimationBuffer_Relative[],
Math::Matrix BoneAnimationBuffer_Absolute[]
);
int AnimateAbsoluteBones
(
const Model::ModelInfo &info, Math::Float deltaTime,
Model::AnimationData anim[], int numAnimations,
Math::Matrix SkinTransformBuffer[],
Math::Matrix BoneAnimationBuffer_Relative[],
Math::Matrix BoneAnimationBuffer_Absolute[]
);
void* data;
/********************************************************
* Public Method Implementations
********************************************************/
Definitions::LightConstants lc;
lc.InvProj = Projection.GetInverse();
lc.Pixels = Core::resolution;
lc.Lights = numLights;
lc.View = View;
lc.Proj = Projection;
lc.SSAORadius = 3;
void DefaultRenderer::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights)
{
Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(0,0,0,0));
Preparations::Basic::ClearDepthStencil(Resources::Gui::depth);
Preparations::Basic::ClearRTV(Resources::GBufferRTV,Resources::GBufferSize,Math::Float4(0,0,0,0));
Lights[1];
data = Resources::Light::LightConstantsData.Map();
memcpy(data, &lc, sizeof(Definitions::LightConstants));
Resources::Light::LightConstantsData.Unmap();
void* data;
data = Resources::Light::PointLightsData.Map();
memcpy(data, Lights, sizeof(Definitions::Pointlight) * numLights);
Resources::Light::PointLightsData.Unmap();
Definitions::LightConstants lc;
lc.InvProj = Projection.GetInverse();
lc.Pixels = Core::resolution;
lc.Lights = numLights;
lc.View = View;
lc.Proj = Projection;
lc.SSAORadius = 3;
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
data = Resources::Light::LightConstantsData.Map();
memcpy(data, &lc, sizeof(Definitions::LightConstants));
Resources::Light::LightConstantsData.Unmap();
data = Resources::Light::PointLightsData.Map();
Definitions::Pointlight* plData = (Definitions::Pointlight*)data;
for(int i=0; i < numLights; ++i)
{
(*i).second->Models=0;
plData[i].Pos = (View * Math::Float4(Lights[i].Pos,1)).xyz;
plData[i].Radius = Lights[i].Radius;
plData[i].Color = Lights[i].Color;
plData[i].Bright = Lights[i].Bright;
}
//memcpy(data, Lights, sizeof(Definitions::Pointlight) * numLights);
Resources::Light::PointLightsData.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Gather::AnimatedPass);
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
{
(*i).second->Models=0;
}
void DefaultRenderer::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection, float deltaTime)
Core::PipelineManager::SetRenderPass(Resources::Gather::AnimatedPass);
}
void DefaultRenderer::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection, float deltaTime)
{
for(int i = 0; i < count; ++i)
{
for(int i = 0; i < count; ++i)
if(&models[i] == NULL || !models[i].Visible)
continue;
Model::ModelInfo* info = models[i].info;
if(!info->Animated && models[i].Instanced)
{
if(&models[i] == NULL || !models[i].Visible)
continue;
Definitions::RenderInstanceData rid;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
rid.WV = View * m;
rid.WVP = Projection * View * models[i].WorldMatrix;
Model::ModelInfo* info = models[i].info;
if(!info->Animated && models[i].Instanced)
{
Definitions::RenderInstanceData rid;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
rid.WV = View * m;
rid.WVP = Projection * View * models[i].WorldMatrix;
rid.Tint = models[i].Tint;
rid.GTint = models[i].GlowTint;
rid.Tint = models[i].Tint;
rid.GTint = models[i].GlowTint;
Resources::RenderData[info]->rid[Resources::RenderData[info]->Models++] = rid;
}
else
{
Definitions::PerModel pm;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
pm.WV = View * m;
pm.WVP = Projection * View * models[i].WorldMatrix;
Model::ModelInfo* info = models[i].info;
Definitions::AnimationData am; //final
if(info->Animated && models[i].Animation.AnimationPlaying != NULL)
{
models[i].Animation.AnimationTime += deltaTime;
////store inverse absolut transform
Math::Matrix SkinTransform[100];
Math::Matrix BoneAnimated[100];
Math::Matrix BoneAbsAnimated[100];
for(int b = 0; b <info->BoneCount; ++b)
{
Model::Bone Bone = info->bones[b];
SkinTransform[b] = Bone.Absolute.GetInverse();
BoneAnimated[b] = Bone.Relative;
BoneAbsAnimated[b] = Bone.Absolute;
}
int b = 0;
Model::Animation A = *models[i].Animation.AnimationPlaying;
while(models[i].Animation.AnimationTime>A.duration && models[i].Animation.LoopAnimation)
models[i].Animation.AnimationTime -= (float)A.duration;
float position = models[i].Animation.AnimationTime;
for(int b = 0; b < A.Bones;++b)
{
//find current frame
int nrOfFrames = A.Frames[b];
Model::Frame PFrame = A.Keyframes[b][nrOfFrames-1];
Model::Frame NFrame = A.Keyframes[b][nrOfFrames-1];
bool FrameFound = false;
for (int i = 0; i < nrOfFrames; i++)
{
if(position < A.Keyframes[b][i].time)
{
PFrame = A.Keyframes[b][i-1];
NFrame = A.Keyframes[b][i];
break;
}
}
float denominator = (float)(NFrame.time - PFrame.time);
if(denominator == 0)
{
BoneAnimated[PFrame.bone.Parent] = PFrame.bone.Relative;
continue;
}
float inter = (float)((position - PFrame.time) / denominator);
Math3D::InterpolateOrientation_UsingNonRigidNlerp(PFrame.bone.Relative,NFrame.bone.Relative,inter, BoneAnimated[PFrame.bone.Parent]);
}
////calculate Absolute Animation Transform
for(int b = 0; b < info->BoneCount; ++b)
{
BoneAbsAnimated[b] = BoneAbsAnimated[info->bones[b].Parent] * BoneAnimated[b];
}
//write data to am
for(int b = 0; b < info->BoneCount; ++b)
{
am.AnimatedData[b] = (BoneAbsAnimated[b] * SkinTransform[b]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy(data,&am,sizeof(Definitions::AnimationData));
Resources::Gather::AnimationData.Unmap();
pm.Animated = 1;
}
else
pm.Animated = 0;
void* data = Resources::Gather::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Gather::ModelData.Unmap();
Definitions::TintData td;
td.GlowTint = models[i].GlowTint;
td.Tint = models[i].Tint;
td.PAD = 0;
td.PAD2 = 0;
int s = sizeof(Definitions::TintData);
data = Render::Resources::Color.Map();
memcpy(data,&td,sizeof(Definitions::TintData));
Render::Resources::Color.Unmap();
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0);
}
}
}
}
void BlurGlow()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(1,1,1,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y;
bd.StartX = 0;
bd.StartY = (UINT)Core::resolution.y/2;
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void BlurSSAO()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(0,0,0,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y/2;
bd.StartX = 0;
bd.StartY = 0;
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void RenderModel(Model::ModelInfo* info, Definitions::RenderInstanceData* rid , int count)
{
if(count < 1)
return;
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
}
void* data = Resources::Gather::InstancedData.Map();
memcpy(data, rid, sizeof(Definitions::RenderInstanceData)*count);
Resources::Gather::InstancedData.Unmap();
if(info->Indexed)
{
Core::deviceContext->DrawIndexedInstanced(info->IndexCount,count,0,0,0);
//Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
Resources::RenderData[info]->rid[Resources::RenderData[info]->Models++] = rid;
}
else
{
Core::deviceContext->DrawInstanced(info->VertexCount,count,0,0);
//Core::deviceContext->Draw(info->VertexCount,0);
Definitions::PerModel pm;
Math::Float3x3 normalTransform;
normalTransform = Math::Float3x3(models[i].WorldMatrix.v[0].xyz, models[i].WorldMatrix.v[1].xyz, models[i].WorldMatrix.v[2].xyz);
normalTransform.Transpose().Invert();
Math::Matrix m = Math::Matrix(Math::Vector4(normalTransform.v[0],0.0f), Math::Vector4(normalTransform.v[1],0.0f), Math::Vector4(normalTransform.v[2],0.0f), Math::Vector4(0.0f));
pm.WV = View * m;
pm.WVP = Projection * View * models[i].WorldMatrix;
Model::ModelInfo* info = models[i].info;
// Bone animation buffers
Math::Matrix SkinTransform[100];
Math::Matrix BoneAnimated[100];
Math::Matrix BoneAbsAnimated[100];
pm.Animated = AnimateAbsoluteBones
(
*info, deltaTime,
models[i].Animation,
::Utility::StaticArray::NumElementsOf( models[i].Animation ),
SkinTransform, BoneAnimated, BoneAbsAnimated
);
void* data = Resources::Gather::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Gather::ModelData.Unmap();
Definitions::TintData td;
td.GlowTint = models[i].GlowTint;
td.Tint = models[i].Tint;
td.PAD = 0;
td.PAD2 = 0;
int s = sizeof(Definitions::TintData);
data = Render::Resources::Color.Map();
memcpy(data,&td,sizeof(Definitions::TintData));
Render::Resources::Color.Unmap();
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0);
}
}
}
}
void BlurGlow()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(1,1,1,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y;
bd.StartX = 0;
bd.StartY = (UINT)Core::resolution.y/2;
void DefaultRenderer::EndFrame()
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void BlurSSAO()
{
Definitions::BlurrData bd;
bd.BlurMask = Math::Float4(0,0,0,1);
bd.StopX = (UINT)Core::resolution.x/2;
bd.StopY = (UINT)Core::resolution.y/2;
bd.StartX = 0;
bd.StartY = 0;
void* data = Resources::Blur::Data.Map();
memcpy(data,&bd,sizeof(Definitions::BlurrData));
Resources::Blur::Data.Unmap();
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1);
}
void RenderModel(Model::ModelInfo* info, Definitions::RenderInstanceData* rid , int count)
{
if(count < 1)
return;
if(info->Material.size())
{
Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Gather::InstancedPass);
Resources::Gather::InstancedData.Apply(1);
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
}
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
void* data = Resources::Gather::InstancedData.Map();
memcpy(data, rid, sizeof(Definitions::RenderInstanceData)*count);
Resources::Gather::InstancedData.Unmap();
if(info->Indexed)
{
Core::deviceContext->DrawIndexedInstanced(info->IndexCount,count,0,0,0);
//Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Core::deviceContext->DrawInstanced(info->VertexCount,count,0,0);
//Core::deviceContext->Draw(info->VertexCount,0);
}
}
void DefaultRenderer::EndFrame()
{
Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Gather::InstancedPass);
Resources::Gather::InstancedData.Apply(1);
for(auto i = Render::Resources::RenderData.begin(); i != Render::Resources::RenderData.end(); i++ )
{
RenderModel((*i).first,(*i).second->rid, (*i).second->Models);
}
Core::PipelineManager::SetRenderPass(Resources::Light::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
BlurGlow();
BlurSSAO();
Core::PipelineManager::SetRenderPass(Resources::Post::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::swapChain->Present(0,0);
}
/********************************************************
* Private Prototype Method Implementations
********************************************************/
void AnimateRelativeBones( const Model::ModelInfo &info, Model::AnimationData &anim, Math::Matrix relativeBuffer[] )
{
for( int i = 0; i < info.BoneCount; ++i )
{
Model::Bone Bone = info.bones[i];
relativeBuffer[i] = Bone.Relative;
}
const Model::Animation &A = *anim.AnimationPlaying;
while( anim.AnimationTime > A.duration && anim.LoopAnimation )
anim.AnimationTime -= (float)A.duration;
float position = anim.AnimationTime;
for( int i = 0; i < A.Bones; ++i )
{
//find current frame
int nrOfFrames = A.Frames[i];
Model::Frame PFrame = A.Keyframes[i][nrOfFrames-1];
Model::Frame NFrame = A.Keyframes[i][nrOfFrames-1];
bool FrameFound = false;
for (int j = 0; j < nrOfFrames; j++)
{
RenderModel((*i).first,(*i).second->rid, (*i).second->Models);
if(position < A.Keyframes[i][j].time)
{
PFrame = A.Keyframes[i][j-1];
NFrame = A.Keyframes[i][j];
break;
}
}
Core::PipelineManager::SetRenderPass(Resources::Light::Pass);
float denominator = (float)(NFrame.time - PFrame.time);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
BlurGlow();
BlurSSAO();
Core::PipelineManager::SetRenderPass(Resources::Post::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::swapChain->Present(0,0);
if( denominator != 0.0f )
{
float inter = (float)((position - PFrame.time) / denominator);
Math3D::InterpolateOrientation_UsingNonRigidNlerp( PFrame.bone.Relative,NFrame.bone.Relative, inter, relativeBuffer[PFrame.bone.Parent] );
}
else
{
relativeBuffer[PFrame.bone.Parent] = PFrame.bone.Relative;
}
}
}
enum Conflict
{
Conflict_detected,
Conflict_useA,
Conflict_useB
};
Conflict DetectBoneAnimationConflict( const Model::Bone &raw, const Math::Matrix &animBoneA, const Math::Matrix &animBoneB );
void MergeAnimatedBones( const Model::Bone raw[], int numBones, Math::Float interpolation, const Math::Matrix *animatedBoneSourceA, Math::Matrix animatedBoneSourceB_Target[] )
{
for( int i = 0; i < numBones; ++i )
{
switch( DetectBoneAnimationConflict(raw[i], animatedBoneSourceA[i], animatedBoneSourceB_Target[i]) )
{
case Conflict_detected:
Math3D::InterpolateOrientation_UsingNonRigidNlerp( animatedBoneSourceA[i], animatedBoneSourceB_Target[i], interpolation, animatedBoneSourceB_Target[i] );
break;
case Conflict_useA:
animatedBoneSourceB_Target[i] = animatedBoneSourceA[i];
break;
default: case Conflict_useB: break;
}
}
}
Conflict DetectBoneAnimationConflict( const Model::Bone &raw, const Math::Matrix &animBoneA, const Math::Matrix &animBoneB )
{
if( animBoneA == raw.Relative )
return Conflict_useB;
if( animBoneB == raw.Relative )
return Conflict_useA;
return Conflict_detected;
}
int AnimateAbsoluteBones( const Model::ModelInfo &info, Math::Float deltaTime, Model::AnimationData &anim, Math::Matrix SkinTransformBuffer[], Math::Matrix BoneAnimationBuffer_Relative[], Math::Matrix BoneAnimationBuffer_Absolute[] )
{
if( !info.Animated || (anim.AnimationPlaying == nullptr) )
{ // no animation
return 0;
}
anim.AnimationTime += deltaTime;
AnimateRelativeBones( info, anim, BoneAnimationBuffer_Relative );
for( int i = 0; i < info.BoneCount; ++i )
{
Model::Bone Bone = info.bones[i];
SkinTransformBuffer[i] = Bone.Absolute.GetInverse();
BoneAnimationBuffer_Absolute[i] = Bone.Absolute;
}
Definitions::AnimationData am;
for( int i = 0; i < info.BoneCount; ++i )
{
//calculate Absolute Animation Transform
BoneAnimationBuffer_Absolute[i] = BoneAnimationBuffer_Absolute[info.bones[i].Parent] * BoneAnimationBuffer_Relative[i];
//write data to am
am.AnimatedData[i] = (BoneAnimationBuffer_Absolute[i] * SkinTransformBuffer[i]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy( data, &am, sizeof(Definitions::AnimationData) );
Resources::Gather::AnimationData.Unmap();
return 1;
}
int AnimateAbsoluteBones( const Model::ModelInfo &info, Math::Float deltaTime, Model::AnimationData anim[], int numAnimations, Math::Matrix SkinTransformBuffer[], Math::Matrix BoneAnimationBuffer_Relative[], Math::Matrix BoneAnimationBuffer_Absolute[] )
{
if( !info.Animated || (numAnimations < 1) )
{ // no animation
return 0;
}
int isAnimated = 0;
// for each animation
for( int i = 0; i < numAnimations; ++i )
{
if( anim[i].AnimationPlaying != nullptr )
{
anim[i].AnimationTime += deltaTime;
if( isAnimated )
{
AnimateRelativeBones( info, anim[i], BoneAnimationBuffer_Absolute ); // Borrowing BoneAnimationBuffer_Absolute as interim buffer
MergeAnimatedBones( info.bones, info.BoneCount, 0.5f, BoneAnimationBuffer_Absolute, BoneAnimationBuffer_Relative );
}
else
{
isAnimated = 1;
AnimateRelativeBones( info, anim[i], BoneAnimationBuffer_Relative );
}
}
}
if( isAnimated )
{
for( int i = 0; i < info.BoneCount; ++i )
{
Model::Bone Bone = info.bones[i];
SkinTransformBuffer[i] = Bone.Absolute.GetInverse();
BoneAnimationBuffer_Absolute[i] = Bone.Absolute;
}
Definitions::AnimationData am;
for( int i = 0; i < info.BoneCount; ++i )
{
//calculate Absolute Animation Transform
BoneAnimationBuffer_Absolute[i] = BoneAnimationBuffer_Absolute[info.bones[i].Parent] * BoneAnimationBuffer_Relative[i];
//write data to am
am.AnimatedData[i] = (BoneAnimationBuffer_Absolute[i] * SkinTransformBuffer[i]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy( data, &am, sizeof(Definitions::AnimationData) );
Resources::Gather::AnimationData.Unmap();
}
return isAnimated;
}
}
}
}

View File

@ -13,7 +13,7 @@ namespace Oyster
class DefaultRenderer
{
public:
static void NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights);
static void NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights, float Fov);
static void RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection, float DeltaTime = 0);
static void EndFrame();
};

View File

@ -24,7 +24,7 @@ namespace Oyster
static const int GBufferSize = 3;
static const int LBufferSize = 3;
static const int MaxLightSize = 100;
static const int MaxLightSize = 1024;
//! GBuffers
//! 0 = Diffuse + Glow

View File

@ -19,20 +19,24 @@ cbuffer LightConstants : register(b0)
{
float4x4 InvProj;
float4x4 Proj;
float2 Pixels;
float FoV;
int Lights;
float SSAORadius;
float pad;
float4x4 View;
}
struct FrustrumPoints
{
float3 v0;
float3 v1;
float3 v2;
float3 v3;
float3 v4;
float3 v5;
float3 NUL;
float3 NUR;
float3 NDL;
float3 NDR;
float3 FUL;
float3 FUR;
float3 FDL;
float3 FDR;
};
Texture2D DiffuseGlow : register(t0);

View File

@ -4,32 +4,32 @@ DiffSpec LightCalc(PointLight pl, float3 pos, int2 texCoord)
{
DiffSpec output;
float4 normalSpec = NormalSpec[texCoord];
float4 LPos = mul(View, float4(pl.Pos, 1));
float3 lightVec = LPos.xyz - pos.xyz;
float4 LPos = float4(pl.Pos, 1);
float3 lightVec = LPos.xyz - pos;
float d = length(lightVec);
lightVec = lightVec/d;
if(d > pl.Radius)
{
output.Diffuse = float3(0,0,0);
output.Specular = float3(0,0,0);
return output;
}
float diffFactor = max(dot(lightVec, normalSpec.xyz), 0.0f);
float3 v = reflect(-lightVec, normalSpec.xyz);
float specFactor = pow(max(dot(v,normalize(-pos)), 0.0f),normalSpec.w);
//Check att later
float att = max( 0, 1 - (d / pl.Radius));
//fix Ilum calcs instead of PhongBlinn
output.Diffuse = pl.Bright * att * diffFactor * pl.Color;
output.Diffuse = pl.Bright * att * diffFactor * pl.Color;
output.Specular = pl.Bright * att * specFactor * pl.Color;
if(diffFactor == 0)
output.Specular * 0;
if(d > pl.Radius)
{
output.Diffuse = float3(0,0,0);
output.Specular = float3(0,0,0);
}
float SpecCo = normalSpec.w < 1 ? 0.0f : 1.0f;
output.Specular = output.Specular * SpecCo;
return output;
}
bool intersects(FrustrumPoints box, int Index)
{
return true;
}

View File

@ -8,20 +8,18 @@
//Calc Ambience Done
//Write Glow
#define EXPAND 1024.0f
#define SHRINK 1.0f/EXPAND
#define UINT_MAX 0xFFFFFFFF
#define FLOAT_MAX 3.402823466e+38
#define BLOCKSIZE 16
#define NUMTHREADS BLOCKSIZE * BLOCKSIZE
#define MAXLIGHTS 100
#define MAXLIGHTS 1024
#define TEXTURESPREAD 1/255
// -- Shared Memory ------------------------------------------------- //
groupshared uint iMinDepth = UINT_MAX,
iMaxDepth = 0;
groupshared uint numVisiblePointLights = 0,
groupshared uint iMinDepth, iMaxDepth;
groupshared uint numVisiblePointLights,
visiblePointlightIndex[MAXLIGHTS];
// ------------------------------------------------------------------ //
@ -29,77 +27,104 @@ groupshared uint numVisiblePointLights = 0,
[numthreads(BLOCKSIZE, BLOCKSIZE, 1)]
void main( uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID, uint3 Gid : SV_GroupID, uint GI : SV_GroupIndex )
{
float2 UV = DTid.xy / Pixels;
float2 UV = DTid.xy / (float2)Diffuse.Length.xy;
UV.x = UV.x * 2 - 1;
UV.y = 1 - 2 * UV.y;
float3 posN = float3(UV, DepthTexture[DTid.xy].x);
// store and load shared minDepth and maxDepth
float minDepth = 0.0f, maxDepth = 0.0f,
depth = posN.z;
float3 ViewPos = ToVpos(DTid.xy, UV);
if(GI==0)
{
uint uidepth = (uint)( depth * EXPAND);
InterlockedMin( iMinDepth, uidepth );
InterlockedMax( iMaxDepth, uidepth );
numVisiblePointLights = 0;
iMinDepth = 0x7F7FFFFF;
iMaxDepth = 0;
}
GroupMemoryBarrierWithGroupSync();
// store and load shared minDepth and maxDepth
float minDepth = 0.0f, maxDepth = 0.0f;
{
InterlockedMin( iMinDepth, asuint(ViewPos.z) );
InterlockedMax( iMaxDepth, asuint(ViewPos.z) );
GroupMemoryBarrierWithGroupSync();
minDepth = (float)( iMinDepth ) * SHRINK;
maxDepth = (float)( iMaxDepth ) * SHRINK;
minDepth = asfloat(iMinDepth);
maxDepth = asfloat(iMaxDepth);
}
// -- Switching to LightCulling ------------------------------------- //
//define collision volume
float2 size = BLOCKSIZE / Pixels;
FrustrumPoints tile;
tile.v0 = float3(size * Gid,minDepth);
tile.v1 = float3(tile.v0.xy+size,maxDepth);
tile.v2 = float3(tile.v1.xy, minDepth);
tile.v3 = float3(tile.v0.x,tile.v1.y,minDepth);
tile.v4 = float3(tile.v1.x, tile.v0.y, minDepth);
tile.v5 = float3(tile.v0.xy, maxDepth);
float2 tilescale = float2(Diffuse.Length.xy) * rcp(float(2 * BLOCKSIZE));
float2 tilebias = tilescale - float2(Gid.xy);
// Now work out composite projection matrix
// Relevant matrix columns for this tile frusta
float4 c1 = float4(Proj._11 * tilescale.x, 0.0f, tilebias.x, 0.0f);
float4 c2 = float4(0.0f, -Proj._22 * tilescale.y, tilebias.y, 0.0f);
float4 c4 = float4(0.0f, 0.0f, 1.0f, 1.0f);
// Derive frustum planes
float4 frustumPlanes[6];
// Sides
frustumPlanes[0] = c4 - c1;
frustumPlanes[1] = c4 + c1;
frustumPlanes[2] = c4 - c2;
frustumPlanes[3] = c4 + c2;
// Near/far
frustumPlanes[4] = float4(0.0f, 0.0f, 1.0f, -minDepth);
frustumPlanes[5] = float4(0.0f, 0.0f, -1.0f, maxDepth);
// Normalize frustum planes (near/far already normalized)
[unroll]
for (uint i = 0; i < 4; ++i)
{
frustumPlanes[i] *= rcp(length(frustumPlanes[i].xyz));
}
// culling the tile's near and far to minDepth & maxDepth ( with tolerance )
uint numPass = (Lights + NUMTHREADS - 1) / NUMTHREADS;
numPass = min( numPass, MAXLIGHTS / NUMTHREADS );
for(uint lightIndex = GI; lightIndex < Lights; lightIndex += NUMTHREADS)
{
PointLight pl = Points[lightIndex];
for( uint passI = 0; passI < numPass; ++passI )
bool inFrustrum = true;
[unroll]
for(int i = 0; i < 6; ++i)
{
uint lightIndex = (passI * NUMTHREADS) + GI;
lightIndex = min( lightIndex, Lights );
if( lightIndex < Lights )
if( intersects(tile, lightIndex) )
{
uint offset;
InterlockedAdd( numVisiblePointLights, 1, offset );
visiblePointlightIndex[offset] = lightIndex;
}
float d = dot(frustumPlanes[i], float4(pl.Pos, 1.0f));
inFrustrum = inFrustrum && (d >= -pl.Radius);
}
[branch]
if(inFrustrum)
{
uint offset;
InterlockedAdd( numVisiblePointLights, 1, offset );
visiblePointlightIndex[offset] = lightIndex;
}
}
GroupMemoryBarrierWithGroupSync();
float3 ViewPos = ToVpos(DTid.xy, UV);
DiffSpec Shaded;
Shaded.Diffuse = float3(0,0,0);
Shaded.Specular = float3(0,0,0);
for(int i = 0; i < Lights; ++i)
for(int i = 0; i < numVisiblePointLights; ++i)
{
DiffSpec light = LightCalc(Points[i], ViewPos, DTid.xy);
DiffSpec light = LightCalc(Points[visiblePointlightIndex[i]], ViewPos, DTid.xy);
Shaded.Diffuse += light.Diffuse;
Shaded.Specular += light.Specular;
}
Diffuse[DTid.xy] = float4(Shaded.Diffuse * DiffuseGlow[DTid.xy].xyz,0);
Diffuse[DTid.xy] = float4(Shaded.Diffuse * DiffuseGlow[DTid.xy].xyz,1);
Specular[DTid.xy] = float4(Shaded.Specular, 0);
@ -113,14 +138,16 @@ void main( uint3 DTid : SV_DispatchThreadID, uint3 GTid : SV_GroupThreadID, uin
DiffBase = DiffBase / 4;
float4 DepthBase = DepthTexture[DTid.xy];
DepthBase = DepthTexture[DTid.xy + uint2(1,0)];
DepthBase = DepthTexture[DTid.xy + uint2(0,1)];
DepthBase = DepthTexture[DTid.xy + uint2(1,1)];
DepthBase += DepthTexture[DTid.xy + uint2(1,0)];
DepthBase += DepthTexture[DTid.xy + uint2(0,1)];
DepthBase += DepthTexture[DTid.xy + uint2(1,1)];
DepthBase = DepthBase /4;
Ambient[DTid.xy/2] = float4(DiffBase.xyz, AmbValue);
Ambient[DTid.xy/2 + float2(Pixels.x/2, 0)] = GUI[DTid.xy];
Ambient[DTid.xy/2 + float2(0, Pixels.y/2)] = float4(DiffBase.xyz * DiffBase.w ,DiffBase.w);
Ambient[DTid.xy/2 + Pixels/2] = float4(NormalSpec[DTid.xy].xyz * float3(1,1,-1),1);
Ambient[DTid.xy/2] = float4(DiffBase.xyz , AmbValue);
//Ambient[DTid.xy/2] = float4(DiffBase.xyz, 1);
Ambient[DTid.xy/2 + float2(Diffuse.Length.x/2, 0)] = GUI[DTid.xy];
Ambient[DTid.xy/2 + float2(0, Diffuse.Length.y/2)] = float4(DiffBase.xyz * DiffBase.w ,DiffBase.w);
//Ambient[DTid.xy/2 + Diffuse.Length.xy/2] = float4(numVisiblePointLights * (1.0f/Lights), 0, 0 ,1);
Ambient[DTid.xy/2 + Diffuse.Length.xy/2] = float4(NormalSpec[DTid.xy/2].xyz ,1);
}
}

View File

@ -23,6 +23,7 @@ float GetSSAO(float3 pos, float2 uv, int2 texCoord2, uint2 rndID)
float3 sampled = mul(tbn, SSAOKernel[i].xyz);
sampled = sampled * Radius + pos;
//project sample to get uv.xy
float4 ProjOffset = float4(sampled,1);
ProjOffset = mul(Proj, ProjOffset);
@ -35,7 +36,7 @@ float GetSSAO(float3 pos, float2 uv, int2 texCoord2, uint2 rndID)
// get depth from that point in screenspace
uint2 texCoord;
texCoord = (uint2)(offset.xy * Pixels);
texCoord = (uint2)(offset.xy * Diffuse.Length.xy);
float3 ViewPos = ToVpos(texCoord, UV);
float sampleDepth = ViewPos.z;
@ -43,6 +44,8 @@ float GetSSAO(float3 pos, float2 uv, int2 texCoord2, uint2 rndID)
//compare to depth from sample
float rangeCheck = (abs(pos.z - sampleDepth) > Radius) ? 1.0f : 0.0f;
occlusion += (sampleDepth <= sampled.z ? 1.0f : 0.0f) * rangeCheck;
//occlusion += rangeCheck;
}
occlusion /= (float)(SSAOKernel.Length.x);
occlusion = 1.0f - occlusion;

View File

@ -44,4 +44,5 @@ void main( uint3 DTid : SV_DispatchThreadID )
//Output[DTid.xy] = float4(Ambient[DTid.xy/2 + uint2(Output.Length*0.5f)].xyz,1);
//Output[DTid.xy] = SSAO * float4(1,1,1,1);
//Output[DTid.xy] = Ambient[DTid.xy];
//Output[DTid.xy] = Diffuse[DTid.xy];
}