#include "SimpleRigidBody.h" #include "PhysicsAPI_Impl.h" using namespace ::Oyster::Physics; using namespace ::Oyster::Physics3D; using namespace ::Oyster::Math3D; using namespace ::Oyster::Collision3D; using namespace ::Utility::DynamicMemory; using namespace ::Utility::Value; namespace Private { const Float epsilon = (const Float)1e-20; // Float calculations can suffer roundingerrors. Which is where epsilon = 1e-20 comes into the picture inline bool EqualsZero( const Float &value ) { // by Dan Andersson return Abs( value ) < epsilon; } inline bool Contains( const Plane &container, const Float4 &pos ) { // by Dan Andersson return EqualsZero( container.normal.Dot( pos ) + container.phasing ); } // revision of Ray Vs Plane intersect test, there ray is more of an axis bool Intersects( const Ray &axis, const Plane &plane, Float &connectDistance ) { // by Dan Andersson Float c = plane.normal.Dot(axis.direction); if( EqualsZero(c) ) { // axis is parallell with the plane. (axis direction orthogonal with the planar normal) connectDistance = 0.0f; return Contains( plane, axis.origin ); } connectDistance = -plane.phasing; connectDistance -= plane.normal.Dot( axis.origin ); connectDistance /= c; return true; } } SimpleRigidBody::SimpleRigidBody() { this->rigid = RigidBody(); this->rigid.SetMass_KeepMomentum( 16.0f ); this->gravityNormal = Float3::null; this->collisionAction = Default::EventAction_Collision; this->ignoreGravity = this->isForwarded = false; this->scene = nullptr; } SimpleRigidBody::SimpleRigidBody( const API::SimpleBodyDescription &desc ) { this->rigid.SetRotation( desc.rotation ); this->rigid.centerPos = desc.centerPosition; this->rigid.SetSize( desc.size ); this->rigid.SetMass_KeepMomentum( desc.mass ); this->rigid.SetMomentOfInertia_KeepMomentum( desc.inertiaTensor ); this->deltaPos = Float4::null; this->deltaAxis = Float4::null; this->gravityNormal = Float3::null; if( desc.subscription ) { this->collisionAction = desc.subscription; } else { this->collisionAction = Default::EventAction_Collision; } this->ignoreGravity = desc.ignoreGravity; this->scene = nullptr; } SimpleRigidBody::~SimpleRigidBody() {} UniquePointer SimpleRigidBody::Clone() const { return new SimpleRigidBody( *this ); } SimpleRigidBody::State SimpleRigidBody::GetState() const { return State( this->rigid.GetMass(), this->rigid.restitutionCoeff, this->rigid.frictionCoeff_Static, this->rigid.frictionCoeff_Kinetic, this->rigid.GetMomentOfInertia(), this->rigid.boundingReach, this->rigid.centerPos, this->rigid.axis, this->rigid.momentum_Linear, this->rigid.momentum_Angular ); } SimpleRigidBody::State & SimpleRigidBody::GetState( SimpleRigidBody::State &targetMem ) const { return targetMem = State( this->rigid.GetMass(), this->rigid.restitutionCoeff, this->rigid.frictionCoeff_Static, this->rigid.frictionCoeff_Kinetic, this->rigid.GetMomentOfInertia(), this->rigid.boundingReach, this->rigid.centerPos, this->rigid.axis, this->rigid.momentum_Linear, this->rigid.momentum_Angular ); } void SimpleRigidBody::SetState( const SimpleRigidBody::State &state ) { this->rigid.centerPos = state.GetCenterPosition(); this->rigid.SetRotation( state.GetRotation() ); this->rigid.boundingReach = state.GetReach(); this->rigid.momentum_Linear = state.GetLinearMomentum(); this->rigid.momentum_Angular = state.GetAngularMomentum(); this->rigid.impulse_Linear += state.GetLinearImpulse(); this->rigid.impulse_Angular += state.GetAngularImpulse(); this->rigid.restitutionCoeff = state.GetRestitutionCoeff(); this->rigid.frictionCoeff_Static = state.GetFrictionCoeff_Static(); this->rigid.frictionCoeff_Kinetic = state.GetFrictionCoeff_Kinetic(); if( state.IsForwarded() ) { this->deltaPos += state.GetForward_DeltaPos(); this->deltaAxis += state.GetForward_DeltaAxis(); this->isForwarded; } if( this->scene ) { if( state.IsSpatiallyAltered() ) { unsigned int tempRef = this->scene->GetTemporaryReferenceOf( this ); this->scene->SetAsAltered( tempRef ); this->scene->EvaluatePosition( tempRef ); } else if( state.IsDisturbed() ) { this->scene->SetAsAltered( this->scene->GetTemporaryReferenceOf(this) ); } } } ICustomBody::SubscriptMessage SimpleRigidBody::CallSubscription( const ICustomBody *proto, const ICustomBody *deuter ) { return this->collisionAction( proto, deuter ); } bool SimpleRigidBody::IsAffectedByGravity() const { return !this->ignoreGravity; } bool SimpleRigidBody::Intersects( const ICollideable &shape ) const { return Box( this->rigid.GetRotationMatrix(), this->rigid.centerPos, this->rigid.GetSize() ).Intersects( shape ); } bool SimpleRigidBody::Intersects( const ICollideable &shape, Float4 &worldPointOfContact ) const { return Box( this->rigid.GetRotationMatrix(), this->rigid.centerPos, this->rigid.GetSize() ).Intersects( shape, worldPointOfContact ); } bool SimpleRigidBody::Intersects( const ICustomBody &object, Float4 &worldPointOfContact ) const { return object.Intersects( Box(this->rigid.GetRotationMatrix(), this->rigid.centerPos, this->rigid.GetSize()), worldPointOfContact ); } Sphere & SimpleRigidBody::GetBoundingSphere( Sphere &targetMem ) const { return targetMem = Sphere( this->rigid.centerPos, this->rigid.boundingReach.GetMagnitude() ); } Float4 & SimpleRigidBody::GetNormalAt( const Float4 &worldPos, Float4 &targetMem ) const { Float4 offset = worldPos - this->rigid.centerPos; Float distance = offset.Dot( offset ); Float3 normal = Float3::null; if( distance != 0.0f ) { // sanity check Ray axis( Float4::standard_unit_w, offset / (Float)::std::sqrt(distance) ); Float minDistance = numeric_limits::max(); Float4x4 rotationMatrix = this->rigid.GetRotationMatrix(); if( Private::Intersects(axis, Plane(rotationMatrix.v[0], -this->rigid.boundingReach.x), axis.collisionDistance) ) { // check along x-axis if( axis.collisionDistance < 0.0f ) normal = -rotationMatrix.v[0].xyz; else normal = rotationMatrix.v[0].xyz; minDistance = Abs( axis.collisionDistance ); } if( Private::Intersects(axis, Plane(rotationMatrix.v[1], -this->rigid.boundingReach.y), axis.collisionDistance) ) { // check along y-axis distance = Abs( axis.collisionDistance ); // recycling memory if( minDistance > distance ) { if( axis.collisionDistance < 0.0f ) normal = -rotationMatrix.v[1].xyz; else normal = rotationMatrix.v[1].xyz; minDistance = distance; } } if( Private::Intersects(axis, Plane(rotationMatrix.v[2], -this->rigid.boundingReach.z), axis.collisionDistance) ) { // check along z-axis if( minDistance > Abs( axis.collisionDistance ) ) { if( axis.collisionDistance < 0.0f ) normal = -rotationMatrix.v[2].xyz; else normal = rotationMatrix.v[2].xyz; } } } targetMem.xyz = normal; targetMem.w = 0.0f; return targetMem; } Float3 & SimpleRigidBody::GetGravityNormal( Float3 &targetMem ) const { return targetMem = this->gravityNormal; } //Float3 & SimpleRigidBody::GetCenter( Float3 &targetMem ) const //{ // return targetMem = this->rigid.centerPos; //} // //Float4x4 & SimpleRigidBody::GetRotation( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.box.rotation; //} // //Float4x4 & SimpleRigidBody::GetOrientation( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.GetOrientation(); //} // //Float4x4 & SimpleRigidBody::GetView( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.GetView(); //} //Float3 SimpleRigidBody::GetRigidLinearVelocity() const //{ // return this->rigid.GetLinearVelocity(); //} UpdateState SimpleRigidBody::Update( Float timeStepLength ) { if( this->isForwarded ) { this->rigid.Move( this->deltaPos, this->deltaAxis ); this->deltaPos = Float4::null; this->deltaAxis = Float4::null; this->isForwarded = false; } this->rigid.Update_LeapFrog( timeStepLength ); //! @todo TODO: compare previous and new state and return result //return this->current == this->previous ? UpdateState_resting : UpdateState_altered; return UpdateState_altered; } void SimpleRigidBody::Predict( Float4 &outDeltaPos, Float4 &outDeltaAxis, const Float4 &actingLinearImpulse, const Float4 &actingAngularImpulse, Float deltaTime ) { this->rigid.Predict_LeapFrog( outDeltaPos, outDeltaAxis, actingLinearImpulse, actingAngularImpulse, deltaTime ); } void SimpleRigidBody::SetScene( void *scene ) { this->scene = (Octree*)scene; } void SimpleRigidBody::SetSubscription( ICustomBody::EventAction_Collision functionPointer ) { if( functionPointer ) { this->collisionAction = functionPointer; } else { this->collisionAction = Default::EventAction_Collision; } } void SimpleRigidBody::SetGravity( bool ignore) { this->ignoreGravity = ignore; this->gravityNormal = Float3::null; } void SimpleRigidBody::SetGravityNormal( const Float3 &normalizedVector ) { this->gravityNormal = normalizedVector; } //void SimpleRigidBody::SetMomentOfInertiaTensor_KeepVelocity( const Float4x4 &localI ) //{ // this->rigid.SetMomentOfInertia_KeepVelocity( localI ); //} // //void SimpleRigidBody::SetMomentOfInertiaTensor_KeepMomentum( const Float4x4 &localI ) //{ // this->rigid.SetMomentOfInertia_KeepMomentum( localI ); //} // //void SimpleRigidBody::SetMass_KeepVelocity( Float m ) //{ // this->rigid.SetMass_KeepVelocity( m ); //} // //void SimpleRigidBody::SetMass_KeepMomentum( Float m ) //{ // this->rigid.SetMass_KeepMomentum( m ); //} // //void SimpleRigidBody::SetCenter( const Float3 &worldPos ) //{ // this->rigid.SetCenter( worldPos ); //} // //void SimpleRigidBody::SetRotation( const Float4x4 &rotation ) //{ // this->rigid.SetRotation( rotation ); //} // //void SimpleRigidBody::SetOrientation( const Float4x4 &orientation ) //{ // this->rigid.SetOrientation( orientation ); //} // //void SimpleRigidBody::SetSize( const Float3 &size ) //{ // this->rigid.SetSize( size ); //} // //void SimpleRigidBody::SetMomentum( const Float3 &worldG ) //{ // this->rigid.SetLinearMomentum( worldG ); //}