#include "SimpleRigidBody.h" #include "PhysicsAPI_Impl.h" using namespace ::Oyster::Physics; using namespace ::Oyster::Physics3D; using namespace ::Oyster::Math3D; using namespace ::Oyster::Collision3D; using namespace ::Utility::DynamicMemory; using namespace ::Utility::Value; SimpleRigidBody::SimpleRigidBody() { this->rigid = RigidBody( Box(Float4x4::identity, Float3::null, Float3(1.0f)), 16.0f, Float4x4::identity ); this->gravityNormal = Float3::null; this->collisionAction = Default::EventAction_Collision; this->ignoreGravity = false; this->scene = nullptr; } SimpleRigidBody::SimpleRigidBody( const API::SimpleBodyDescription &desc ) { this->rigid = RigidBody( Box( desc.rotation, desc.centerPosition.xyz, desc.size.xyz ), desc.mass, desc.inertiaTensor ); this->gravityNormal = Float3::null; if( desc.subscription ) { this->collisionAction = desc.subscription; } else { this->collisionAction = Default::EventAction_Collision; } this->ignoreGravity = desc.ignoreGravity; this->scene = nullptr; } SimpleRigidBody::~SimpleRigidBody() {} UniquePointer SimpleRigidBody::Clone() const { return new SimpleRigidBody( *this ); } SimpleRigidBody::State SimpleRigidBody::GetState() const { return State( this->rigid.GetMass(), this->rigid.restitutionCoeff, this->rigid.frictionCoeff_Static, this->rigid.frictionCoeff_Kinetic, this->rigid.GetMomentOfInertia(), this->rigid.box.boundingOffset, this->rigid.box.center, AngularAxis(this->rigid.box.rotation), Float4(this->rigid.linearMomentum, 0.0f), Float4(this->rigid.angularMomentum, 0.0f) ); } SimpleRigidBody::State & SimpleRigidBody::GetState( SimpleRigidBody::State &targetMem ) const { return targetMem = State( this->rigid.GetMass(), this->rigid.restitutionCoeff, this->rigid.frictionCoeff_Static, this->rigid.frictionCoeff_Kinetic, this->rigid.GetMomentOfInertia(), this->rigid.box.boundingOffset, this->rigid.box.center, AngularAxis(this->rigid.box.rotation), Float4(this->rigid.linearMomentum, 0.0f), Float4(this->rigid.angularMomentum, 0.0f) ); } void SimpleRigidBody::SetState( const SimpleRigidBody::State &state ) { this->rigid.box.boundingOffset = state.GetReach(); this->rigid.box.center = state.GetCenterPosition(); this->rigid.box.rotation = state.GetRotation(); this->rigid.angularMomentum = state.GetAngularMomentum().xyz; this->rigid.linearMomentum = state.GetLinearMomentum().xyz; this->rigid.impulseTorqueSum += state.GetAngularImpulse().xyz; this->rigid.impulseForceSum += state.GetLinearImpulse().xyz; this->rigid.restitutionCoeff = state.GetRestitutionCoeff(); this->rigid.frictionCoeff_Static = state.GetFrictionCoeff_Static(); this->rigid.frictionCoeff_Kinetic = state.GetFrictionCoeff_Kinetic(); if( this->scene ) { if( state.IsSpatiallyAltered() ) { unsigned int tempRef = this->scene->GetTemporaryReferenceOf( this ); this->scene->SetAsAltered( tempRef ); this->scene->EvaluatePosition( tempRef ); } else if( state.IsDisturbed() ) { this->scene->SetAsAltered( this->scene->GetTemporaryReferenceOf(this) ); } } } ICustomBody::SubscriptMessage SimpleRigidBody::CallSubscription( const ICustomBody *proto, const ICustomBody *deuter ) { return this->collisionAction( proto, deuter ); } bool SimpleRigidBody::IsAffectedByGravity() const { return !this->ignoreGravity; } bool SimpleRigidBody::Intersects( const ICollideable &shape ) const { return this->rigid.box.Intersects( shape ); } bool SimpleRigidBody::Intersects( const ICollideable &shape, Float4 &worldPointOfContact ) const { return this->rigid.box.Intersects( shape, worldPointOfContact ); } bool SimpleRigidBody::Intersects( const ICustomBody &object, Float4 &worldPointOfContact ) const { return object.Intersects( this->rigid.box, worldPointOfContact ); } Sphere & SimpleRigidBody::GetBoundingSphere( Sphere &targetMem ) const { return targetMem = Sphere( this->rigid.box.center, this->rigid.box.boundingOffset.GetMagnitude() ); } Float4 & SimpleRigidBody::GetNormalAt( const Float4 &worldPos, Float4 &targetMem ) const { Float4 offset = worldPos - this->rigid.box.center; Float distance = offset.Dot( offset ); Float3 normal = Float3::standard_unit_z; if( distance != 0.0f ) { Ray ray( Float4::standard_unit_w, offset / (Float)::std::sqrt(distance) ); Float minDistance = numeric_limits::max(); if( ray.Intersects(Plane(this->rigid.box.xAxis, this->rigid.box.boundingOffset.x)) ) { // check along x-axis if( ray.collisionDistance < 0.0f ) normal = -this->rigid.box.xAxis.xyz; else normal = this->rigid.box.xAxis.xyz; minDistance = Abs( ray.collisionDistance ); } if( ray.Intersects(Plane(this->rigid.box.yAxis, this->rigid.box.boundingOffset.y)) ) { // check along y-axis distance = Abs( ray.collisionDistance ); // recycling memory if( minDistance > distance ) { if( ray.collisionDistance < 0.0f ) normal = -this->rigid.box.yAxis.xyz; else normal = this->rigid.box.yAxis.xyz; minDistance = distance; } } if( ray.Intersects(Plane(this->rigid.box.zAxis, this->rigid.box.boundingOffset.z)) ) { // check along z-axis if( minDistance > Abs( ray.collisionDistance ) ) { if( ray.collisionDistance < 0.0f ) normal = -this->rigid.box.zAxis.xyz; else normal = this->rigid.box.zAxis.xyz; } } } targetMem.xyz = normal; return targetMem; } Float3 & SimpleRigidBody::GetGravityNormal( Float3 &targetMem ) const { return targetMem = this->gravityNormal; } //Float3 & SimpleRigidBody::GetCenter( Float3 &targetMem ) const //{ // return targetMem = this->rigid.box.center; //} // //Float4x4 & SimpleRigidBody::GetRotation( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.box.rotation; //} // //Float4x4 & SimpleRigidBody::GetOrientation( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.GetOrientation(); //} // //Float4x4 & SimpleRigidBody::GetView( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.GetView(); //} Float3 SimpleRigidBody::GetRigidLinearVelocity() const { return this->rigid.GetLinearVelocity(); } UpdateState SimpleRigidBody::Update( Float timeStepLength ) { this->rigid.Update_LeapFrog( timeStepLength ); // compare previous and new state and return result //return this->current == this->previous ? UpdateState_resting : UpdateState_altered; return UpdateState_altered; } void SimpleRigidBody::SetScene( void *scene ) { this->scene = (Octree*)scene; } void SimpleRigidBody::SetSubscription( ICustomBody::EventAction_Collision functionPointer ) { if( functionPointer ) { this->collisionAction = functionPointer; } else { this->collisionAction = Default::EventAction_Collision; } } void SimpleRigidBody::SetGravity( bool ignore) { this->ignoreGravity = ignore; this->gravityNormal = Float3::null; } void SimpleRigidBody::SetGravityNormal( const Float3 &normalizedVector ) { this->gravityNormal = normalizedVector; } //void SimpleRigidBody::SetMomentOfInertiaTensor_KeepVelocity( const Float4x4 &localI ) //{ // this->rigid.SetMomentOfInertia_KeepVelocity( localI ); //} // //void SimpleRigidBody::SetMomentOfInertiaTensor_KeepMomentum( const Float4x4 &localI ) //{ // this->rigid.SetMomentOfInertia_KeepMomentum( localI ); //} // //void SimpleRigidBody::SetMass_KeepVelocity( Float m ) //{ // this->rigid.SetMass_KeepVelocity( m ); //} // //void SimpleRigidBody::SetMass_KeepMomentum( Float m ) //{ // this->rigid.SetMass_KeepMomentum( m ); //} // //void SimpleRigidBody::SetCenter( const Float3 &worldPos ) //{ // this->rigid.SetCenter( worldPos ); //} // //void SimpleRigidBody::SetRotation( const Float4x4 &rotation ) //{ // this->rigid.SetRotation( rotation ); //} // //void SimpleRigidBody::SetOrientation( const Float4x4 &orientation ) //{ // this->rigid.SetOrientation( orientation ); //} // //void SimpleRigidBody::SetSize( const Float3 &size ) //{ // this->rigid.SetSize( size ); //} // //void SimpleRigidBody::SetMomentum( const Float3 &worldG ) //{ // this->rigid.SetLinearMomentum( worldG ); //}