///////////////////////////////////////////////////////////////////// // Created by Dan Andersson & Robin Engman 2013 ///////////////////////////////////////////////////////////////////// #include "RigidBody.h" #include "Utilities.h" using namespace ::Oyster::Collision3D; using namespace ::Oyster::Physics3D; using namespace ::Oyster::Math3D; RigidBody::RigidBody( const Box &b, Float m ) : box(b), angularMomentum(0.0f), linearMomentum(0.0f), impulseTorqueSum(0.0f), impulseForceSum(0.0f) { // by Dan Andersson if( m != 0.0f ) { this->mass = m; } else { this->mass = ::Utility::Value::numeric_limits::epsilon(); } this->momentOfInertiaTensor = Float4x4::identity; } RigidBody & RigidBody::operator = ( const RigidBody &body ) { // by Dan Andersson this->box = body.box; this->angularMomentum = body.angularMomentum; this->linearMomentum = body.linearMomentum; this->impulseTorqueSum = body.impulseTorqueSum; this->impulseForceSum = body.impulseForceSum; this->mass = body.mass; this->momentOfInertiaTensor = body.momentOfInertiaTensor; return *this; } void RigidBody::Update_LeapFrog( Float deltaTime ) { // by Dan Andersson: Euler leap frog update when Runga Kutta is not needed // Important! The member data is all world data except the Inertia tensor. Thus a new InertiaTensor needs to be created to be compatible with the rest of the world data. Float4x4 wMomentOfInertiaTensor = TransformMatrix( this->box.rotation, this->momentOfInertiaTensor ); // updating the linear // dv = dt * a = dt * F / m // ds = dt * avg_v Float3 deltaLinearVelocity = this->impulseForceSum; deltaLinearVelocity *= (deltaTime / this->mass); Float3 deltaPos = deltaTime * ::Utility::Value::AverageWithDelta( Formula::LinearVelocity(this->mass, this->linearMomentum), deltaLinearVelocity ); // updating the angular // dw = dt * a = dt * ( I^-1 * T ) // rotation = dt * avg_w Float4x4 inversedMomentOfInertiaTensor = wMomentOfInertiaTensor.GetInverse(); Float3 deltaAngularVelocity = Formula::AngularImpulseAcceleration( inversedMomentOfInertiaTensor, this->impulseTorqueSum ); // I^-1 * T deltaAngularVelocity *= deltaTime; Float3 rotationAxis = ::Utility::Value::AverageWithDelta( Formula::AngularVelocity(inversedMomentOfInertiaTensor,this->angularMomentum), deltaAngularVelocity ); Float deltaRadian = rotationAxis.Dot( rotationAxis ); if( deltaRadian != 0.0f ) { // branch depending if there is rotation deltaRadian = ::std::sqrt( deltaRadian ); rotationAxis /= deltaRadian; // using rotationAxis, deltaRadian and deltaPos to create a matrix to update the box this->box.center += deltaPos; TransformMatrix( RotationMatrix(deltaRadian, rotationAxis), this->box.rotation, this->box.rotation ); } else { // no rotation, only use deltaPos to translate the RigidBody this->box.center += deltaPos; } // update movements and clear impulses this->linearMomentum += Formula::LinearMomentum( this->mass, deltaLinearVelocity ); this->impulseForceSum = Float3::null; this->angularMomentum += Formula::AngularMomentum( wMomentOfInertiaTensor, deltaAngularVelocity ); this->impulseTorqueSum = Float3::null; } void RigidBody::ApplyImpulseForce( const Float3 &worldF ) { // by Dan Andersson this->impulseForceSum += worldF; } void RigidBody::ApplyImpulseForceAt( const Float3 &worldF, const Float3 &worldPos ) { // by Dan Andersson Float3 worldOffset = worldPos - this->box.center; if( worldOffset != Float3::null ) { this->impulseForceSum += VectorProjection( worldF, worldOffset ); this->impulseTorqueSum += Formula::ImpulseTorque( worldF, worldOffset ); } else { this->impulseForceSum += worldF; } } void RigidBody::ApplyLinearImpulseAcceleration( const Float3 &worldA ) { // by Dan Andersson this->impulseForceSum += Formula::ImpulseForce( this->mass, worldA ); } void RigidBody::ApplyLinearImpulseAccelerationAt( const Float3 &worldA, const Float3 &worldPos ) { // by Dan Andersson Float3 worldOffset = worldPos - this->box.center; if( worldOffset != Float3::null ) { this->impulseForceSum += Formula::ImpulseForce( this->mass, VectorProjection(worldA, worldOffset) ); // tanAcc = angularAcc x localPosition // angularAcc = localPosition x tanAcc = localPosition x linearAcc // T = I * angularAcc this->impulseTorqueSum += Formula::ImpulseTorque( this->momentOfInertiaTensor, Formula::AngularImpulseAcceleration(worldA, worldOffset) ); } else { this->impulseForceSum += Formula::ImpulseForce( this->mass, worldA ); } } void RigidBody::ApplyImpulseTorque( const Float3 &worldT ) { // by Dan Andersson this->impulseTorqueSum += worldT; } void RigidBody::ApplyAngularImpulseAcceleration( const Float3 &worldA ) { // by Dan Andersson this->impulseTorqueSum += Formula::ImpulseTorque( this->momentOfInertiaTensor, worldA ); } Float4x4 & RigidBody::AccessOrientation() { // by Dan Andersson return this->box.orientation; } const Float4x4 & RigidBody::AccessOrientation() const { // by Dan Andersson return this->box.orientation; } Float3 & RigidBody::AccessBoundingReach() { // by Dan Andersson return this->box.boundingOffset; } const Float3 & RigidBody::AccessBoundingReach() const { // by Dan Andersson return this->box.boundingOffset; } Float3 & RigidBody::AccessCenter() { // by Dan Andersson return this->box.center; } const Float3 & RigidBody::AccessCenter() const { // by Dan Andersson return this->box.center; } const Float4x4 & RigidBody::GetMomentOfInertia() const { // by Dan Andersson return this->momentOfInertiaTensor; } const Float & RigidBody::GetMass() const { // by Dan Andersson return this->mass; } const Float4x4 & RigidBody::GetOrientation() const { // by Dan Andersson return this->box.orientation; } Float4x4 RigidBody::GetView() const { // by Dan Andersson return InverseOrientationMatrix( this->box.orientation ); } const Float3 & RigidBody::GetBoundingReach() const { // by Dan Andersson return this->box.boundingOffset; } Float3 RigidBody::GetSize() const { // by Dan Andersson return 2.0f * this->box.boundingOffset; } const Float3 & RigidBody::GetCenter() const { // by Dan Andersson return this->box.center; } const Float3 & RigidBody::GetImpulsTorque() const { // by Dan Andersson return this->impulseTorqueSum; } const Float3 & RigidBody::GetAngularMomentum() const { // by Dan Andersson return this->angularMomentum; } Float3 RigidBody::GetAngularImpulseAcceleration() const { // by Dan Andersson return Formula::AngularImpulseAcceleration( this->momentOfInertiaTensor.GetInverse(), this->impulseTorqueSum ); } Float3 RigidBody::GetAngularVelocity() const { // by Dan Andersson return Formula::AngularVelocity( this->momentOfInertiaTensor.GetInverse(), this->angularMomentum ); } const Float3 & RigidBody::GetImpulseForce() const { // by Dan Andersson return this->impulseForceSum; } const Float3 & RigidBody::GetLinearMomentum() const { // by Dan Andersson return this->linearMomentum; } Float3 RigidBody::GetLinearImpulseAcceleration() const { // by Dan Andersson return Formula::LinearImpulseAcceleration( this->mass, this->impulseForceSum ); } Float3 RigidBody::GetLinearVelocity() const { // by Dan Andersson return Formula::LinearVelocity( this->mass, this->linearMomentum ); } Float3 RigidBody::GetTangentialImpulseForceAt( const Float3 &worldPos ) const { // by Dan Andersson Float3 worldOffset = worldPos - this->box.center; return Formula::TangentialImpulseForce( this->impulseTorqueSum, worldOffset ); } Float3 RigidBody::GetTangentialLinearMomentumAt( const Float3 &worldPos ) const { // by Dan Andersson return Formula::TangentialLinearMomentum( this->angularMomentum, worldPos ); } Float3 RigidBody::GetTangentialImpulseAccelerationAt( const Float3 &worldPos ) const { // by Dan Andersson return this->GetTangentialImpulseAccelerationAt_Local( (this->GetView() * Float4(worldPos, 1.0f)).xyz ); // should not be any disform thus result.w = 1.0f } Float3 RigidBody::GetTangentialLinearVelocityAt( const Float3 &worldPos ) const { // by Dan Andersson return this->GetTangentialLinearVelocityAt_Local( (this->GetView() * Float4(worldPos, 1.0f)).xyz ); // should not be any disform thus result.w = 1.0f } Float3 RigidBody::GetImpulseForceAt( const Float3 &worldPos ) const { // by Dan Andersson Float4 localForce = Float4( this->GetImpulseForceAt_Local((this->GetView() * Float4(worldPos, 1.0f)).xyz), 0.0f ); // should not be any disform thus result.w = 1.0f return (this->box.orientation * localForce).xyz; // should not be any disform thus result.w = 0.0f } Float3 RigidBody::GetLinearMomentumAt( const Float3 &worldPos ) const { // by Dan Andersson // Reminder! Momentum is a world value. Float4 localMomentum = Float4( this->GetLinearMomentumAt_Local((this->GetView() * Float4(worldPos, 1.0f)).xyz), 0.0f ); // should not be any disform thus result.w = 1.0f return (this->box.orientation * localMomentum).xyz; // should not be any disform thus result.w = 0.0f // TODO: angularMomentum is a local value!! return this->linearMomentum + Formula::TangentialLinearMomentum( this->angularMomentum, worldPos ); } Float3 RigidBody::GetImpulseAccelerationAt( const Float3 &worldPos ) const { // by Dan Andersson // Reminder! Acceleration is a world value. return Formula::LinearImpulseAcceleration( this->mass, this->impulseForceSum ) + Formula::TangentialImpulseAcceleration( this->momentOfInertiaTensor.GetInverse(), this->impulseTorqueSum, worldPos ); } Float3 RigidBody::GetLinearVelocityAt( const Float3 &worldPos ) const { // by Dan Andersson // Reminder! Velocity is a world value. return Formula::LinearVelocity( this->mass, this->linearMomentum ) + Formula::TangentialLinearVelocity( this->momentOfInertiaTensor.GetInverse(), this->angularMomentum, worldPos ); } void RigidBody::SetMomentOfInertia( const Float4x4 &localI ) { // by Dan Andersson if( i.GetDeterminant() != 0.0f ) // insanitycheck! momentOfInertiaTensor must be invertable { this->momentOfInertiaTensor = i; } } void RigidBody::SetMass_KeepVelocity( const Float &m ) { // by Dan Andersson if( m != 0.0f ) // insanitycheck! mass must be invertable { Float3 velocity = Formula::LinearVelocity( this->mass, this->linearMomentum ); this->mass = m; this->linearMomentum = Formula::LinearMomentum( this->mass, velocity ); } } void RigidBody::SetMass_KeepMomentum( const Float &m ) { // by Dan Anderson if( m != 0.0f ) // insanitycheck! mass must be invertable { this->mass = m; } } void RigidBody::SetOrientation( const Float4x4 &o ) { // by Dan Andersson this->box.orientation = o; } void RigidBody::SetSize( const Float3 &widthHeight ) { // by Dan Andersson this->box.boundingOffset = 0.5f * widthHeight; } void RigidBody::SetCenter( const Float3 &worldPos ) { // by Dan Andersson this->box.center = p; } void RigidBody::SetImpulseTorque( const Float3 &worldT ) { // by Dan Andersson this->impulseTorqueSum = t; } void RigidBody::SetAngularMomentum( const Float3 &worldH ) { // by Dan Andersson this->angularMomentum = h; } void RigidBody::SetAngularImpulseAcceleration( const Float3 &worldA ) { // by Dan Andersson this->impulseTorqueSum = Formula::ImpulseTorque( this->momentOfInertiaTensor, a ); } void RigidBody::SetAngularVelocity( const Float3 &worldW ) { // by Dan Andersson this->angularMomentum = Formula::AngularMomentum( this->momentOfInertiaTensor, w ); } void RigidBody::SetImpulseForce( const Float3 &worldF ) { // by Dan Andersson this->impulseForceSum = f; } void RigidBody::SetLinearMomentum( const Float3 &worldG ) { // by Dan Andersson this->linearMomentum = g; } void RigidBody::SetLinearImpulseAcceleration( const Float3 &worldA ) { // by Dan Andersson this->impulseForceSum = Formula::ImpulseForce( this->mass, a ); } void RigidBody::SetLinearVelocity( const Float3 &worldV ) { // by Dan Andersson this->linearMomentum = Formula::LinearMomentum( this->mass, v ); } void RigidBody::SetImpulseForceAt( const Float3 &worldF, const Float3 &worldPos ) { // by Dan Andersson // Reminder! Impulse force and torque is world values. this->impulseForceSum = VectorProjection( worldForce, worldPos ); this->impulseTorqueSum = Formula::ImpulseTorque( worldForce, worldPos ); } void RigidBody::SetLinearMomentumAt( const Float3 &worldG, const Float3 &worldPos ) { // by Dan Andersson // Reminder! Linear and angular momentum is world values. this->linearMomentum = VectorProjection( worldG, worldPos ); this->angularMomentum = Formula::AngularMomentum( worldG, worldPos ); } void RigidBody::SetImpulseAccelerationAt( const Float3 &worldA, const Float3 &pos ) { // by } void RigidBody::SetLinearVelocityAt( const Float3 &worldV, const Float3 &pos ) { // by }