///////////////////////////////////////////////////////////////////// // Collection of Linear Math Stuff // © Dan Andersson 2013 ///////////////////////////////////////////////////////////////////// #ifndef LINEARMATH_H #define LINEARMATH_H #include "Vector.h" #include "Matrix.h" #include "Quaternion.h" #include <math.h> namespace std { template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> asin( const ::LinearAlgebra::Vector2<ScalarType> &vec ) { return ::LinearAlgebra::Vector2<ScalarType>( asin(vec.x), asin(vec.y) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> asin( const ::LinearAlgebra::Vector3<ScalarType> &vec ) { return ::LinearAlgebra::Vector3<ScalarType>( asin(vec.x), asin(vec.y), asin(vec.z) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> asin( const ::LinearAlgebra::Vector4<ScalarType> &vec ) { return ::LinearAlgebra::Vector4<ScalarType>( asin(vec.x), asin(vec.y), asin(vec.z), asin(vec.w) ); } } // x2 template<typename ScalarType> inline ::LinearAlgebra::Matrix2x2<ScalarType> operator * ( const ::LinearAlgebra::Matrix2x2<ScalarType> &left, const ::LinearAlgebra::Matrix2x2<ScalarType> &right ) { return ::LinearAlgebra::Matrix2x2<ScalarType>( (left.m11 * right.m11) + (left.m12 * right.m21), (left.m11 * right.m12) + (left.m12 * right.m22), (left.m21 * right.m11) + (left.m22 * right.m21), (left.m21 * right.m12) + (left.m22 * right.m22) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> operator * ( const ::LinearAlgebra::Matrix2x2<ScalarType> &matrix, const ::LinearAlgebra::Vector2<ScalarType> &vector ) { return ::LinearAlgebra::Vector2<ScalarType>( (matrix.m11 * vector.x) + (matrix.m12 * vector.y), (matrix.m21 * vector.x) + (matrix.m22 * vector.y) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> operator * ( const ::LinearAlgebra::Vector2<ScalarType> &vector, const ::LinearAlgebra::Matrix2x2<ScalarType> &left ) { return ::LinearAlgebra::Vector2<ScalarType>( (vector.x * matrix.m11) + (vector.y * matrix.m21), (vector.x * matrix.m12) + (vector.y * matrix.m22) ); } // x3 template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> operator * ( const ::LinearAlgebra::Matrix3x3<ScalarType> &left, const ::LinearAlgebra::Matrix3x3<ScalarType> &right ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( (left.m11 * right.m11) + (left.m12 * right.m21) + (left.m13 * right.m31), (left.m11 * right.m12) + (left.m12 * right.m22) + (left.m13 * right.m32), (left.m11 * right.m13) + (left.m12 * right.m23) + (left.m13 * right.m33), (left.m21 * right.m11) + (left.m22 * right.m21) + (left.m23 * right.m31), (left.m21 * right.m12) + (left.m22 * right.m22) + (left.m23 * right.m32), (left.m21 * right.m13) + (left.m22 * right.m23) + (left.m23 * right.m33), (left.m31 * right.m11) + (left.m32 * right.m21) + (left.m33 * right.m31), (left.m31 * right.m12) + (left.m32 * right.m22) + (left.m33 * right.m32), (left.m31 * right.m13) + (left.m32 * right.m23) + (left.m33 * right.m33) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> operator * ( const ::LinearAlgebra::Matrix3x3<ScalarType> &matrix, const ::LinearAlgebra::Vector3<ScalarType> &vector ) { return ::LinearAlgebra::Vector3<ScalarType>( (matrix.m11 * vector.x) + (matrix.m12 * vector.y) + (matrix.m13 * vector.z), (matrix.m21 * vector.x) + (matrix.m22 * vector.y) + (matrix.m23 * vector.z), (matrix.m31 * vector.x) + (matrix.m32 * vector.y) + (matrix.m33 * vector.z) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> operator * ( const ::LinearAlgebra::Vector3<ScalarType> &vector, const ::LinearAlgebra::Matrix3x3<ScalarType> &left ) { return ::LinearAlgebra::Vector3<ScalarType>( (vector.x * matrix.m11) + (vector.y * matrix.m21) + (vector.z * matrix.m31), (vector.x * matrix.m12) + (vector.y * matrix.m22) + (vector.z * matrix.m32), (vector.x * matrix.m13) + (vector.y * matrix.m23) + (vector.z * matrix.m33) ); } // x4 template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> operator * ( const ::LinearAlgebra::Matrix4x4<ScalarType> &left, const ::LinearAlgebra::Matrix4x4<ScalarType> &right ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( (left.m11 * right.m11) + (left.m12 * right.m21) + (left.m13 * right.m31) + (left.m14 * right.m41), (left.m11 * right.m12) + (left.m12 * right.m22) + (left.m13 * right.m32) + (left.m14 * right.m42), (left.m11 * right.m13) + (left.m12 * right.m23) + (left.m13 * right.m33) + (left.m14 * right.m43), (left.m11 * right.m14) + (left.m12 * right.m24) + (left.m13 * right.m34) + (left.m14 * right.m44), (left.m21 * right.m11) + (left.m22 * right.m21) + (left.m23 * right.m31) + (left.m24 * right.m41), (left.m21 * right.m12) + (left.m22 * right.m22) + (left.m23 * right.m32) + (left.m24 * right.m42), (left.m21 * right.m13) + (left.m22 * right.m23) + (left.m23 * right.m33) + (left.m24 * right.m43), (left.m21 * right.m14) + (left.m22 * right.m24) + (left.m23 * right.m34) + (left.m24 * right.m44), (left.m31 * right.m11) + (left.m32 * right.m21) + (left.m33 * right.m31) + (left.m34 * right.m41), (left.m31 * right.m12) + (left.m32 * right.m22) + (left.m33 * right.m32) + (left.m34 * right.m42), (left.m31 * right.m13) + (left.m32 * right.m23) + (left.m33 * right.m33) + (left.m34 * right.m43), (left.m31 * right.m14) + (left.m32 * right.m24) + (left.m33 * right.m34) + (left.m34 * right.m44), (left.m41 * right.m11) + (left.m42 * right.m21) + (left.m43 * right.m31) + (left.m44 * right.m41), (left.m41 * right.m12) + (left.m42 * right.m22) + (left.m43 * right.m32) + (left.m44 * right.m42), (left.m41 * right.m13) + (left.m42 * right.m23) + (left.m43 * right.m33) + (left.m44 * right.m43), (left.m41 * right.m14) + (left.m42 * right.m24) + (left.m43 * right.m34) + (left.m44 * right.m44) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> operator * ( const ::LinearAlgebra::Matrix4x4<ScalarType> &matrix, const ::LinearAlgebra::Vector4<ScalarType> &vector ) { return ::LinearAlgebra::Vector4<ScalarType>( (matrix.m11 * vector.x) + (matrix.m12 * vector.y) + (matrix.m13 * vector.z) + (matrix.m14 * vector.w), (matrix.m21 * vector.x) + (matrix.m22 * vector.y) + (matrix.m23 * vector.z) + (matrix.m24 * vector.w), (matrix.m23 * vector.x) + (matrix.m32 * vector.y) + (matrix.m33 * vector.z) + (matrix.m34 * vector.w), (matrix.m41 * vector.x) + (matrix.m42 * vector.y) + (matrix.m43 * vector.z) + (matrix.m44 * vector.w) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> operator * ( const ::LinearAlgebra::Vector4<ScalarType> &vector, const ::LinearAlgebra::Matrix4x4<ScalarType> &matrix ) { return ::LinearAlgebra::Vector4<ScalarType>( (vector.x * matrix.m11) + (vector.y * matrix.m21) + (vector.z * matrix.m31) + (vector.w * matrix.m41), (vector.x * matrix.m12) + (vector.y * matrix.m22) + (vector.z * matrix.m32) + (vector.w * matrix.m42), (vector.x * matrix.m13) + (vector.y * matrix.m23) + (vector.z * matrix.m33) + (vector.w * matrix.m43), (vector.x * matrix.m14) + (vector.y * matrix.m24) + (vector.z * matrix.m34) + (vector.w * matrix.m44) ); } namespace LinearAlgebra { // Creates a solution matrix for 'out´= 'targetMem' * 'in'. // Returns false if there is no explicit solution. template<typename ScalarType> bool SuperpositionMatrix( const Matrix2x2<ScalarType> &in, const Matrix2x2<ScalarType> &out, Matrix2x2<ScalarType> &targetMem ) { ScalarType d = in.GetDeterminant(); if( d == 0 ) return false; targetMem = out * (in.GetAdjoint() /= d); return true; } // Creates a solution matrix for 'out´= 'targetMem' * 'in'. // Returns false if there is no explicit solution. template<typename ScalarType> bool SuperpositionMatrix( const Matrix3x3<ScalarType> &in, const Matrix3x3<ScalarType> &out, Matrix3x3<ScalarType> &targetMem ) { ScalarType d = in.GetDeterminant(); if( d == 0 ) return false; targetMem = out * (in.GetAdjoint() /= d); return true; } // Creates a solution matrix for 'out´= 'targetMem' * 'in'. // Returns false if there is no explicit solution. template<typename ScalarType> bool SuperpositionMatrix( const Matrix4x4<ScalarType> &in, const Matrix4x4<ScalarType> &out, Matrix4x4<ScalarType> &targetMem ) { ScalarType d = in.GetDeterminant(); if( d == 0 ) return false; targetMem = out * (in.GetAdjoint() /= d); return true; } /******************************************************************** * Linear Interpolation * @return start * (1-t) + end * t ********************************************************************/ template<typename PointType, typename ScalarType> inline PointType Lerp( const PointType &start, const PointType &end, const ScalarType &t ) { return end * t + start * ( 1 - t ); } /******************************************************************** * Normalized Linear Interpolation * @return nullvector if Lerp( start, end, t ) is nullvector. ********************************************************************/ template<typename ScalarType> inline Vector2<ScalarType> Nlerp( const Vector2<ScalarType> &start, const Vector2<ScalarType> &end, const ScalarType &t ) { Vector2<ScalarType> output = Lerp( start, end, t ); ScalarType magnitudeSquared = output.Dot( output ); if( magnitudeSquared != 0 ) { return output /= (ScalarType)::std::sqrt( magnitudeSquared ); } return output; // error: returning nullvector } /******************************************************************** * Normalized Linear Interpolation * @return nullvector if Lerp( start, end, t ) is nullvector. ********************************************************************/ template<typename ScalarType> inline Vector3<ScalarType> Nlerp( const Vector3<ScalarType> &start, const Vector3<ScalarType> &end, const ScalarType &t ) { Vector3<ScalarType> output = Lerp( start, end, t ); ScalarType magnitudeSquared = output.Dot( output ); if( magnitudeSquared != 0 ) { return output /= (ScalarType)::std::sqrt( magnitudeSquared ); } return output; // error: returning nullvector } /******************************************************************** * Normalized Linear Interpolation * @return nullvector if Lerp( start, end, t ) is nullvector. ********************************************************************/ template<typename ScalarType> inline Vector4<ScalarType> Nlerp( const Vector4<ScalarType> &start, const Vector4<ScalarType> &end, const ScalarType &t ) { Vector4<ScalarType> output = Lerp( start, end, t ); ScalarType magnitudeSquared = output.Dot( output ); if( magnitudeSquared != 0 ) { return output /= (ScalarType)::std::sqrt( magnitudeSquared ); } return output; // error: returning nullvector } /******************************************************************** * Spherical Linear Interpolation on Quaternions ********************************************************************/ template<typename ScalarType> inline Quaternion<ScalarType> Slerp( const Quaternion<ScalarType> &start, const Quaternion<ScalarType> &end, const ScalarType &t ) { ScalarType angle = (ScalarType)::std::acos( Vector4<ScalarType>(start.imaginary, start.real).Dot(Vector4<ScalarType>(end.imaginary, end.real)) ); Quaternion<ScalarType> result = start * (ScalarType)::std::sin( angle * (1 - t) ); result += end * (ScalarType)::std::sin( angle * t ); result *= (ScalarType)1.0f / (ScalarType)::std::sin( angle ); return result; } } namespace LinearAlgebra2D { template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> X_AxisTo( const ::LinearAlgebra::Vector2<ScalarType> &yAxis ) { return ::LinearAlgebra::Vector2<ScalarType>( yAxis.y, -yAxis.x ); } template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> Y_AxisTo( const ::LinearAlgebra::Vector2<ScalarType> &xAxis ) { return ::LinearAlgebra::Vector2<ScalarType>( -xAxis.y, xAxis.x ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & TranslationMatrix( const ::LinearAlgebra::Vector2<ScalarType> &position, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( 1, 0, position.x, 0, 1, position.y, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix2x2<ScalarType> & RotationMatrix( const ScalarType &radian, ::LinearAlgebra::Matrix2x2<ScalarType> &targetMem = ::LinearAlgebra::Matrix2x2<ScalarType>() ) { ScalarType s = ::std::sin( radian ), c = ::std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix2x2<ScalarType>( c, -s, s, c ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & RotationMatrix( const ScalarType &radian, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { ScalarType s = ::std::sin( radian ), c = ::std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( c,-s, 0, s, c, 0, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix2x2<ScalarType> & InverseRotationMatrix( const ::LinearAlgebra::Matrix2x2<ScalarType> &rotationMatrix ) { return rotationMatrix.GetTranspose(); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & InverseRotationMatrix( const ::LinearAlgebra::Matrix3x3<ScalarType> &rotationMatrix ) { return rotationMatrix.GetTranspose(); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> OrientationMatrix( const ::LinearAlgebra::Matrix2x2<ScalarType> &rotation, const ::LinearAlgebra::Vector2<ScalarType> &translation ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( ::LinearAlgebra::Vector3<ScalarType>(rotation.v[0], 0), ::LinearAlgebra::Vector3<ScalarType>(rotation.v[1], 0), ::LinearAlgebra::Vector3<ScalarType>(translation, 1) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> OrientationMatrix( const ::LinearAlgebra::Matrix3x3<ScalarType> &rotation, const ::LinearAlgebra::Vector2<ScalarType> &translation ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( rotation.v[0], rotation.v[1], ::LinearAlgebra::Vector3<ScalarType>(translation, 1) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & OrientationMatrix( const ScalarType &radian, const ::LinearAlgebra::Vector2<ScalarType> &position, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { ScalarType s = ::std::sin( radian ), c = ::std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( c,-s, position.x, s, c, position.y, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & OrientationMatrix( const ::LinearAlgebra::Vector2<ScalarType> &lookAt, const ::LinearAlgebra::Vector2<ScalarType> &position, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { ::LinearAlgebra::Vector2<ScalarType> direction = ( lookAt - position ).GetNormalized(); return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( ::LinearAlgebra::Vector3<ScalarType>( X_AxisTo(direction), 0.0f ), ::LinearAlgebra::Vector3<ScalarType>( direction, 0.0f ), ::LinearAlgebra::Vector3<ScalarType>( position, 1.0f ) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & OrientationMatrix( const ScalarType &radian, const ::LinearAlgebra::Vector2<ScalarType> &position, const ::LinearAlgebra::Vector2<ScalarType> ¢erOfRotation, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { // TODO: not tested RotationMatrix( radian, targetMem ); targetMem.v[2].xy = position + centerOfRotation; targetMem.v[2].x -= ::LinearAlgebra::Vector2<ScalarType>( targetMem.v[0].x, targetMem.v[1].x ).Dot( centerOfRotation ); targetMem.v[2].y -= ::LinearAlgebra::Vector2<ScalarType>( targetMem.v[0].y, targetMem.v[1].y ).Dot( centerOfRotation ); return targetMem; } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & InverseOrientationMatrix( const ::LinearAlgebra::Matrix3x3<ScalarType> &orientationMatrix, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( orientationMatrix.m11, orientationMatrix.m21, -orientationMatrix.v[0].xy.Dot(orientationMatrix.v[2].xy), orientationMatrix.m12, orientationMatrix.m22, -orientationMatrix.v[1].xy.Dot(orientationMatrix.v[2].xy), 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> ExtractRotationMatrix( const ::LinearAlgebra::Matrix3x3<ScalarType> &orientationMatrix ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( orientationMatrix.v[0], orientationMatrix.v[1], ::LinearAlgebra::Vector3<ScalarType>::standard_unit_z ); } } namespace LinearAlgebra3D { // All Matrix to AngularAxis conversions here is incorrect //template<typename ScalarType> //inline ::LinearAlgebra::Vector4<ScalarType> AngularAxis( const ::LinearAlgebra::Matrix3x3<ScalarType> &rotationMatrix ) //{ // return ::std::asin( ::LinearAlgebra::Vector4<ScalarType>(rotationMatrix.v[1].z, rotationMatrix.v[2].x, rotationMatrix.v[0].y, 1) ); //} //template<typename ScalarType> //inline ::LinearAlgebra::Vector4<ScalarType> AngularAxis( const ::LinearAlgebra::Matrix4x4<ScalarType> &rotationMatrix ) //{ // return ::std::asin( ::LinearAlgebra::Vector4<ScalarType>(rotationMatrix.v[1].z, rotationMatrix.v[2].x, rotationMatrix.v[0].y, 1) ); //} //template<typename ScalarType> //inline ::LinearAlgebra::Vector4<ScalarType> ExtractAngularAxis( const ::LinearAlgebra::Matrix4x4<ScalarType> &orientationMatrix ) //{ // return ::std::asin( ::LinearAlgebra::Vector4<ScalarType>(orientationMatrix.v[1].z, orientationMatrix.v[2].x, orientationMatrix.v[0].y, 0) ); //} template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & TranslationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &position, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( 1, 0, 0, position.x, 0, 1, 0, position.y, 0, 0, 1, position.z, 0, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Quaternion<ScalarType> Rotation( const ScalarType &radian, const ::LinearAlgebra::Vector3<ScalarType> &normalizedAxis ) { ScalarType r = radian * 0.5f, s = std::sin( r ), c = std::cos( r ); return ::LinearAlgebra::Quaternion<ScalarType>( normalizedAxis * s, c ); } template<typename ScalarType> inline ::LinearAlgebra::Quaternion<ScalarType> Rotation( const ScalarType &radian, const ::LinearAlgebra::Vector4<ScalarType> &normalizedAxis ) { ScalarType r = radian * 0.5f, s = std::sin( r ), c = std::cos( r ); return ::LinearAlgebra::Quaternion<ScalarType>( (normalizedAxis * s).xyz, c ); } template<typename ScalarType> inline ::LinearAlgebra::Quaternion<ScalarType> Rotation( const ::LinearAlgebra::Vector3<ScalarType> &angularAxis ) { ScalarType radius = angularAxis.Dot( angularAxis ); if( radius != 0 ) { radius = (ScalarType)::std::sqrt( radius ); return Rotation( radius, angularAxis / radius ); } else { return ::LinearAlgebra::Quaternion<ScalarType>::identity; } } template<typename ScalarType> inline ::LinearAlgebra::Quaternion<ScalarType> Rotation( const ::LinearAlgebra::Vector4<ScalarType> &angularAxis ) { ScalarType radius = angularAxis.Dot( angularAxis ); if( radius != 0 ) { radius = (ScalarType)::std::sqrt( radius ); return Rotation( radius, angularAxis / radius ); } else { return ::LinearAlgebra::Quaternion<ScalarType>::identity; } } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & RotationMatrix( const ::LinearAlgebra::Quaternion<ScalarType> &rotationQuaternion, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ::LinearAlgebra::Quaternion<ScalarType> conjugate = rotationQuaternion.GetConjugate(); targetMem.v[0] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(1,0,0)*conjugate).imaginary, 0 ); targetMem.v[1] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(0,1,0)*conjugate).imaginary, 0 ); targetMem.v[2] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(0,0,1)*conjugate).imaginary, 0 ); targetMem.v[3] = ::LinearAlgebra::Vector4<ScalarType>::standard_unit_w; return targetMem; } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & OrientationMatrix( const ::LinearAlgebra::Quaternion<ScalarType> &rotationQuaternion, const ::LinearAlgebra::Vector3<ScalarType> &translation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ::LinearAlgebra::Quaternion<ScalarType> conjugate = rotationQuaternion.GetConjugate(); targetMem.v[0] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(1,0,0)*conjugate).imaginary, 0 ); targetMem.v[1] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(0,1,0)*conjugate).imaginary, 0 ); targetMem.v[2] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(0,0,1)*conjugate).imaginary, 0 ); targetMem.v[3] = ::LinearAlgebra::Vector4<ScalarType>( translation, 1 ); return targetMem; } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & OrientationMatrix( const ::LinearAlgebra::Quaternion<ScalarType> &rotationQuaternion, const ::LinearAlgebra::Vector4<ScalarType> &translation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ::LinearAlgebra::Quaternion<ScalarType> conjugate = rotationQuaternion.GetConjugate(); targetMem.v[0] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(1,0,0)*conjugate).imaginary, 0 ); targetMem.v[1] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(0,1,0)*conjugate).imaginary, 0 ); targetMem.v[2] = ::LinearAlgebra::Vector4<ScalarType>( (rotationQuaternion*::LinearAlgebra::Vector3<ScalarType>(0,0,1)*conjugate).imaginary, 0 ); targetMem.v[3] = translation; return targetMem; } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & ViewMatrix( const ::LinearAlgebra::Quaternion<ScalarType> &rotationQuaternion, const ::LinearAlgebra::Vector3<ScalarType> &translation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { OrientationMatrix( rotationQuaternion, translation, targetMem ); return InverseOrientationMatrix( targetMem, targetMem ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & ViewMatrix( const ::LinearAlgebra::Quaternion<ScalarType> &rotationQuaternion, const ::LinearAlgebra::Vector4<ScalarType> &translation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { OrientationMatrix( rotationQuaternion, translation, targetMem ); return InverseOrientationMatrix( targetMem, targetMem ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & RotationMatrix_AxisX( const ScalarType &radian, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { ScalarType s = std::sin( radian ), c = std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( 1, 0, 0, 0, c,-s, 0, s, c ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & RotationMatrix_AxisX( const ScalarType &radian, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ScalarType s = std::sin( radian ), c = std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( 1, 0, 0, 0, 0, c,-s, 0, 0, s, c, 0, 0, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & RotationMatrix_AxisY( const ScalarType &radian, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { ScalarType s = std::sin( radian ), c = std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>( c, 0, s, 0, 1, 0, -s, 0, c ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & RotationMatrix_AxisY( const ScalarType &radian, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ScalarType s = std::sin( radian ), c = std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( c, 0, s, 0, 0, 1, 0, 0, -s, 0, c, 0, 0, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & RotationMatrix_AxisZ( const ScalarType &radian, ::LinearAlgebra::Matrix3x3<ScalarType> &targetMem = ::LinearAlgebra::Matrix3x3<ScalarType>() ) { return ::LinearAlgebra2D::RotationMatrix( radian, targetMem ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & RotationMatrix_AxisZ( const ScalarType &radian, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ScalarType s = std::sin( radian ), c = std::cos( radian ); return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( c,-s, 0, 0, s, c, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1 ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> RotationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &angularAxis ) { ScalarType radian = angularAxis.GetMagnitude(); if( radian != 0 ) { return RotationMatrix( angularAxis / radian, radian ); } else { return ::LinearAlgebra::Matrix4x4<ScalarType>::identity; } } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & RotationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &normalizedAxis, const ScalarType &radian, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { /// TODO: not verified ScalarType r = radian * 0.5f, s = std::sin( r ), c = std::cos( r ); ::LinearAlgebra::Quaternion<ScalarType> q( normalizedAxis * s, c ), qConj = q.GetConjugate(); targetMem.v[0] = ::LinearAlgebra::Vector4<ScalarType>( (q*::LinearAlgebra::Vector3<ScalarType>(1,0,0)*qConj).imaginary, 0 ); targetMem.v[1] = ::LinearAlgebra::Vector4<ScalarType>( (q*::LinearAlgebra::Vector3<ScalarType>(0,1,0)*qConj).imaginary, 0 ); targetMem.v[2] = ::LinearAlgebra::Vector4<ScalarType>( (q*::LinearAlgebra::Vector3<ScalarType>(0,0,1)*qConj).imaginary, 0 ); targetMem.v[3] = ::LinearAlgebra::Vector4<ScalarType>::standard_unit_w; return targetMem; } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> & InverseRotationMatrix( const ::LinearAlgebra::Matrix3x3<ScalarType> &rotationMatrix ) { return rotationMatrix.GetTranspose(); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & InverseRotationMatrix( const ::LinearAlgebra::Matrix4x4<ScalarType> &rotationMatrix ) { return rotationMatrix.GetTranspose(); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> OrientationMatrix( const ::LinearAlgebra::Matrix3x3<ScalarType> &rotation, const ::LinearAlgebra::Vector3<ScalarType> &translation ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( ::LinearAlgebra::Vector4<ScalarType>(rotation.v[0], 0), ::LinearAlgebra::Vector4<ScalarType>(rotation.v[1], 0), ::LinearAlgebra::Vector4<ScalarType>(rotation.v[2], 0), ::LinearAlgebra::Vector4<ScalarType>(translation, 1) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> OrientationMatrix( const ::LinearAlgebra::Matrix4x4<ScalarType> &rotation, const ::LinearAlgebra::Vector3<ScalarType> &translation ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( rotation.v[0], rotation.v[1], rotation.v[2], ::LinearAlgebra::Vector4<ScalarType>(translation, 1) ); } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & OrientationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &normalizedAxis, const ScalarType &deltaRadian, const ::LinearAlgebra::Vector3<ScalarType> &sumTranslation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { /** @todo TODO: not tested */ RotationMatrix( normalizedAxis, deltaRadian, targetMem ); targetMem.v[3].xyz = sumTranslation; return targetMem; } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & OrientationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &angularAxis, const ::LinearAlgebra::Vector3<ScalarType> &translation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ScalarType radian = angularAxis.Dot( angularAxis ); if( radian > 0 ) { radian = ::std::sqrt( radian ); return OrientationMatrix( angularAxis / radian, radian, translation, targetMem ); } else { targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>::identity; targetMem.v[3].xyz = translation; return targetMem; } } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & ViewMatrix( const ::LinearAlgebra::Vector3<ScalarType> &angularAxis, const ::LinearAlgebra::Vector3<ScalarType> &translation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ScalarType radian = angularAxis.Dot( angularAxis ); if( radian > 0 ) { radian = ::std::sqrt( radian ); return InverseOrientationMatrix( OrientationMatrix(angularAxis / radian, radian, translation, targetMem) ); } else { targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>::identity; targetMem.v[3].xyz = -translation; return targetMem; } } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & OrientationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &sumDeltaAngularAxis, const ::LinearAlgebra::Vector3<ScalarType> &sumTranslation, const ::LinearAlgebra::Vector3<ScalarType> ¢erOfRotation, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { /** @todo TODO: not tested */ ScalarType radian = sumDeltaAngularAxis.Dot( sumDeltaAngularAxis ); if( radian > 0 ) { radian = ::std::sqrt( radian ); RotationMatrix( sumDeltaAngularAxis / radian, radian, targetMem ); } else targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>::identity; targetMem.v[3].xyz = sumTranslation + centerOfRotation; targetMem.v[3].x -= ::LinearAlgebra::Vector3<ScalarType>( targetMem.v[0].x, targetMem.v[1].x, targetMem.v[2].x ).Dot( centerOfRotation ); targetMem.v[3].y -= ::LinearAlgebra::Vector3<ScalarType>( targetMem.v[0].y, targetMem.v[1].y, targetMem.v[2].y ).Dot( centerOfRotation ); targetMem.v[3].z -= ::LinearAlgebra::Vector3<ScalarType>( targetMem.v[0].z, targetMem.v[1].z, targetMem.v[2].z ).Dot( centerOfRotation ); return targetMem; } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> OrientationMatrix_LookAtDirection( const ::LinearAlgebra::Vector3<ScalarType> &normalizedDirection, const ::LinearAlgebra::Vector3<ScalarType> &normalizedUpVector, const ::LinearAlgebra::Vector3<ScalarType> &worldPos ) { // Righthanded system! Forward is considered to be along negative z axis. Up is considered along positive y axis. ::LinearAlgebra::Vector3<ScalarType> right = normalizedDirection.Cross( normalizedUpVector ).GetNormalized(); return ::LinearAlgebra::Matrix4x4<ScalarType>( ::LinearAlgebra::Vector4<ScalarType>( right, 0.0f ), ::LinearAlgebra::Vector4<ScalarType>( right.Cross( normalizedDirection ), 0.0f ), ::LinearAlgebra::Vector4<ScalarType>( normalizedDirection, 0.0f ), ::LinearAlgebra::Vector4<ScalarType>( worldPos, 1.0f ) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> OrientationMatrix_LookAtPos( const ::LinearAlgebra::Vector3<ScalarType> &worldLookAt, const ::LinearAlgebra::Vector3<ScalarType> &normalizedUpVector, const ::LinearAlgebra::Vector3<ScalarType> &worldPos ) { // Righthanded system! Forward is considered to be along negative z axis. Up is considered along positive y axis. ::LinearAlgebra::Vector3<ScalarType> direction = ( worldLookAt - worldPos ).GetNormalized(); return OrientationMatrix_LookAtDirection( direction, normalizedUpVector, worldPos ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> & InverseOrientationMatrix( const ::LinearAlgebra::Matrix4x4<ScalarType> &orientationMatrix, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( orientationMatrix.m11, orientationMatrix.m21, orientationMatrix.m31, -orientationMatrix.v[0].xyz.Dot(orientationMatrix.v[3].xyz), orientationMatrix.m12, orientationMatrix.m22, orientationMatrix.m32, -orientationMatrix.v[1].xyz.Dot(orientationMatrix.v[3].xyz), orientationMatrix.m13, orientationMatrix.m23, orientationMatrix.m33, -orientationMatrix.v[2].xyz.Dot(orientationMatrix.v[3].xyz), 0, 0, 0, 1 ); } // O0 = T0 * R0 // O1 = T1 * T0 * R1 * R0 template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & UpdateOrientationMatrix( const ::LinearAlgebra::Vector3<ScalarType> &deltaPosition, const ::LinearAlgebra::Matrix4x4<ScalarType> &deltaRotationMatrix, ::LinearAlgebra::Matrix4x4<ScalarType> &orientationMatrix ) { ::LinearAlgebra::Vector3<ScalarType> position = deltaPosition + orientationMatrix.v[3].xyz; orientationMatrix.v[3].xyz = ::LinearAlgebra::Vector3<ScalarType>::null; orientationMatrix = deltaRotationMatrix * orientationMatrix; orientationMatrix.v[3].xyz = position; return orientationMatrix; } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> ExtractRotationMatrix( const ::LinearAlgebra::Matrix4x4<ScalarType> &orientationMatrix ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( orientationMatrix.v[0], orientationMatrix.v[1], orientationMatrix.v[2], ::LinearAlgebra::Vector4<ScalarType>::standard_unit_w ); } /* Creates an orthographic projection matrix designed for DirectX enviroment. width; of the projection sample volume. height; of the projection sample volume. nearClip: Distance to the nearClippingPlane. farClip: Distance to the farClippingPlane targetMem; is set to an orthographic projection matrix and then returned. */ template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & ProjectionMatrix_Orthographic( const ScalarType &width, const ScalarType &height, const ScalarType &nearClip, const ScalarType &farClip, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { /** @todo TODO: not tested */ ScalarType c = 1 / (nearClip - farClip); return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( 2/width, 0, 0, 0, 0, 2/height, 0, 0, 0, 0, -c, nearClip*c, 0, 0, 0, 1 ); } /******************************************************************* * Creates a perspective projection matrix designed for DirectX enviroment. * @param vertFoV; is the vertical field of vision in radians. (lookup FoV Hor+ ) * @param aspect; is the screenratio width/height (example 16/9 or 16/10 ) * @param nearClip: Distance to the nearClippingPlane * @param farClip: Distance to the farClippingPlane * @param targetMem; is set to a perspective transform matrix and then returned. * @return targetMem * @test Compare with transposed D3D counterpart *******************************************************************/ template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & ProjectionMatrix_Perspective( const ScalarType &vertFoV, const ScalarType &aspect, const ScalarType &nearClip, const ScalarType &farClip, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { ScalarType fov = 1 / ::std::tan( vertFoV * 0.5f ), dDepth = farClip / (farClip - nearClip); return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( fov / aspect, 0, 0, 0, 0, fov, 0, 0, 0, 0, dDepth, -(dDepth * nearClip), 0, 0, 1, 0 ); } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & ProjectionMatrix_Perspective( const ScalarType &left, const ScalarType &right, const ScalarType &top, const ScalarType &bottom, const ScalarType &nearClip, const ScalarType &farClip, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>() ) { /** @todo TODO: not tested */ ScalarType fov = 1 / ::std::tan( vertFoV * 0.5f ), dDepth = farClip / (farClip - nearClip); return targetMem = ::LinearAlgebra::Matrix4x4<ScalarType>( 2*nearClip/(right - left), 0, -(right + left)/(right - left), 0, 0, 2*nearClip/(top - bottom), -(top + bottom)/(top - bottom), 0, 0, 0, dDepth, -(dDepth * nearClip), 0, 0, 1, 0 ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> VectorProjection( const ::LinearAlgebra::Vector3<ScalarType> &vector, const ::LinearAlgebra::Vector3<ScalarType> &axis ) { return axis * ( vector.Dot(axis) / axis.Dot(axis) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> VectorProjection( const ::LinearAlgebra::Vector4<ScalarType> &vector, const ::LinearAlgebra::Vector4<ScalarType> &axis ) { return axis * ( vector.Dot(axis) / axis.Dot(axis) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> NormalProjection( const ::LinearAlgebra::Vector3<ScalarType> &vector, const ::LinearAlgebra::Vector3<ScalarType> &normalizedAxis ) { return normalizedAxis * ( vector.Dot(normalizedAxis) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> NormalProjection( const ::LinearAlgebra::Vector4<ScalarType> &vector, const ::LinearAlgebra::Vector4<ScalarType> &normalizedAxis ) { return normalizedAxis * ( vector.Dot(normalizedAxis) ); } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & SnapAxisYToNormal_UsingNlerp( ::LinearAlgebra::Matrix4x4<ScalarType> &rotation, const ::LinearAlgebra::Vector4<ScalarType> &normalizedAxis ) { ScalarType projectedMagnitude = rotation.v[0].Dot( normalizedAxis ); if( projectedMagnitude == 1 ) { // infinite possible solutions -> roadtrip! ::LinearAlgebra::Vector4<ScalarType> interpolated = ::LinearAlgebra::Nlerp( rotation.v[1], normalizedAxis, (ScalarType)0.5f ); // interpolated.Dot( interpolated ) == 0 should be impossible at this point projectedMagnitude = rotation.v[0].Dot( interpolated ); rotation.v[0] -= projectedMagnitude * interpolated; rotation.v[0].Normalize(); projectedMagnitude = rotation.v[0].Dot( normalizedAxis ); } rotation.v[0] -= projectedMagnitude * normalizedAxis; rotation.v[0].Normalize(); rotation.v[1] = normalizedAxis; rotation.v[2].xyz = rotation.v[0].xyz.Cross( rotation.v[1].xyz ); return rotation; } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & InterpolateAxisYToNormal_UsingNlerp( ::LinearAlgebra::Matrix4x4<ScalarType> &rotation, const ::LinearAlgebra::Vector4<ScalarType> &normalizedAxis, ScalarType t ) { ::LinearAlgebra::Vector4<ScalarType> interpolated = ::LinearAlgebra::Nlerp( rotation.v[1], normalizedAxis, t ); if( interpolated.Dot(interpolated) == 0 ) return rotation; // return no change return SnapAxisYToNormal_UsingNlerp( rotation, interpolated ); } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & InterpolateOrientation_UsingNonRigidNlerp( const ::LinearAlgebra::Matrix4x4<ScalarType> &start, const ::LinearAlgebra::Matrix4x4<ScalarType> &end, ScalarType t, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem ) { targetMem.v[0] = ::LinearAlgebra::Nlerp( start.v[0], end.v[0], t ); targetMem.v[1] = ::LinearAlgebra::Nlerp( start.v[1], end.v[1], t ); targetMem.v[2] = ::LinearAlgebra::Nlerp( start.v[2], end.v[2], t ); targetMem.v[3] = ::LinearAlgebra::Lerp( start.v[3], end.v[3], t ); return targetMem; } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & InterpolateOrientation_UsingNonRigidNlerp( const ::LinearAlgebra::Quaternion<ScalarType> &startR, const ::LinearAlgebra::Vector3<ScalarType> &startT, const ::LinearAlgebra::Quaternion<ScalarType> &endR, const ::LinearAlgebra::Vector3<ScalarType> &endT, ScalarType t, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem ) { return InterpolateOrientation_UsingNonRigidNlerp( OrientationMatrix(startR, startT), OrientationMatrix(endR, endT), t, targetMem ); } template<typename ScalarType> ::LinearAlgebra::Matrix4x4<ScalarType> & InterpolateOrientation_UsingSlerp( const ::LinearAlgebra::Quaternion<ScalarType> &startR, const ::LinearAlgebra::Vector3<ScalarType> &startT, const ::LinearAlgebra::Quaternion<ScalarType> &endR, const ::LinearAlgebra::Vector3<ScalarType> &endT, ScalarType t, ::LinearAlgebra::Matrix4x4<ScalarType> &targetMem ) { return OrientationMatrix( ::LinearAlgebra::Slerp(startR, endR, t), ::LinearAlgebra::Lerp(::LinearAlgebra::Vector4<ScalarType>(startT, (ScalarType)1.0f), ::LinearAlgebra::Vector4<ScalarType>(endT, (ScalarType)1.0f), t).xyz, targetMem ); } } #include "Utilities.h" namespace Utility { namespace Value { // Utility Value Specializations template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> Abs( const ::LinearAlgebra::Vector2<ScalarType> &vector ) { return ::LinearAlgebra::Vector2<ScalarType>( Abs(vector.x), Abs(vector.y) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> Abs( const ::LinearAlgebra::Vector3<ScalarType> &vector ) { return ::LinearAlgebra::Vector3<ScalarType>( Abs(vector.xy), Abs(vector.z) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> Abs( const ::LinearAlgebra::Vector4<ScalarType> &vector ) { return ::LinearAlgebra::Vector4<ScalarType>( Abs(vector.xyz), Abs(vector.w) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix2x2<ScalarType> Abs( const ::LinearAlgebra::Matrix2x2<ScalarType> &matrix ) { return ::LinearAlgebra::Matrix2x2<ScalarType>( Abs(matrix.v[0]), Abs(matrix.v[1]) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> Abs( const ::LinearAlgebra::Matrix3x3<ScalarType> &matrix ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( Abs(matrix.v[0]), Abs(matrix.v[1]), Abs(matrix.v[2]) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> Abs( const ::LinearAlgebra::Matrix4x4<ScalarType> &matrix ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( Abs(matrix.v[0]), Abs(matrix.v[1]), Abs(matrix.v[2]), Abs(matrix.v[3]) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> Max( const ::LinearAlgebra::Vector2<ScalarType> &vectorA, const ::LinearAlgebra::Vector2<ScalarType> &vectorB ) { return ::LinearAlgebra::Vector2<ScalarType>( Max(vectorA.x, vectorB.x), Max(vectorA.y, vectorB.y) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> Max( const ::LinearAlgebra::Vector3<ScalarType> &vectorA, const ::LinearAlgebra::Vector3<ScalarType> &vectorB ) { return ::LinearAlgebra::Vector3<ScalarType>( Max(vectorA.xy, vectorB.xy), Max(vectorA.z, vectorB.z) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> Max( const ::LinearAlgebra::Vector4<ScalarType> &vectorA, const ::LinearAlgebra::Vector4<ScalarType> &vectorB ) { return ::LinearAlgebra::Vector4<ScalarType>( Max(vectorA.xyz, vectorB.xyz), Max(vectorA.w, vectorB.w) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix2x2<ScalarType> Max( const ::LinearAlgebra::Matrix2x2<ScalarType> &matrixA, const ::LinearAlgebra::Matrix2x2<ScalarType> &matrixB ) { return ::LinearAlgebra::Matrix2x2<ScalarType>( Max(matrixA.v[0], matrixB.v[0]), Max(matrixA.v[1], matrixB.v[1]) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> Max( const ::LinearAlgebra::Matrix3x3<ScalarType> &matrixA, const ::LinearAlgebra::Matrix3x3<ScalarType> &matrixB ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( Max(matrixA.v[0], matrixB.v[0]), Max(matrixA.v[1], matrixB.v[1]), Max(matrixA.v[2], matrixB.v[2]) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> Max( const ::LinearAlgebra::Matrix4x4<ScalarType> &matrixA, const ::LinearAlgebra::Matrix4x4<ScalarType> &matrixB ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( Max(matrixA.v[0], matrixB.v[0]), Max(matrixA.v[1], matrixB.v[1]), Max(matrixA.v[2], matrixB.v[2]), Max(matrixA.v[3], matrixB.v[3]) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector2<ScalarType> Min( const ::LinearAlgebra::Vector2<ScalarType> &vectorA, const ::LinearAlgebra::Vector2<ScalarType> &vectorB ) { return ::LinearAlgebra::Vector2<ScalarType>( Min(vectorA.x, vectorB.x), Min(vectorA.y, vectorB.y) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector3<ScalarType> Min( const ::LinearAlgebra::Vector3<ScalarType> &vectorA, const ::LinearAlgebra::Vector3<ScalarType> &vectorB ) { return ::LinearAlgebra::Vector3<ScalarType>( Min(vectorA.xy, vectorB.xy), Min(vectorA.z, vectorB.z) ); } template<typename ScalarType> inline ::LinearAlgebra::Vector4<ScalarType> Min( const ::LinearAlgebra::Vector4<ScalarType> &vectorA, const ::LinearAlgebra::Vector4<ScalarType> &vectorB ) { return ::LinearAlgebra::Vector4<ScalarType>( Min(vectorA.xyz, vectorB.xyz), Min(vectorA.w, vectorB.w) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix2x2<ScalarType> Min( const ::LinearAlgebra::Matrix2x2<ScalarType> &matrixA, const ::LinearAlgebra::Matrix2x2<ScalarType> &matrixB ) { return ::LinearAlgebra::Matrix2x2<ScalarType>( Min(matrixA.v[0], matrixB.v[0]), Min(matrixA.v[1], matrixB.v[1]) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix3x3<ScalarType> Min( const ::LinearAlgebra::Matrix3x3<ScalarType> &matrixA, const ::LinearAlgebra::Matrix3x3<ScalarType> &matrixB ) { return ::LinearAlgebra::Matrix3x3<ScalarType>( Min(matrixA.v[0], matrixB.v[0]), Min(matrixA.v[1], matrixB.v[1]), Min(matrixA.v[2], matrixB.v[2]) ); } template<typename ScalarType> inline ::LinearAlgebra::Matrix4x4<ScalarType> Min( const ::LinearAlgebra::Matrix4x4<ScalarType> &matrixA, const ::LinearAlgebra::Matrix4x4<ScalarType> &matrixB ) { return ::LinearAlgebra::Matrix4x4<ScalarType>( Min(matrixA.v[0], matrixB.v[0]), Min(matrixA.v[1], matrixB.v[1]), Min(matrixA.v[2], matrixB.v[2]), Min(matrixA.v[3], matrixB.v[3]) ); } } } #endif