///////////////////////////////////////////////////////////////////// // Created by Dan Andersson 2013 ///////////////////////////////////////////////////////////////////// #include "Box.h" #include "OysterCollision3D.h" using namespace ::Oyster::Collision3D; using namespace ::Oyster::Math3D; Box::Box( ) : ICollideable(Type_box) { this->rotation = Float4x4::identity; this->center =0.0f; this->boundingOffset = Float3(0.5f); } Box::Box( const Float4x4 &r, const Float3 &p, const Float3 &s ) : ICollideable(Type_box) { this->rotation = r; this->center = Float4( p, 1.0f ); this->boundingOffset = Float4( s * 0.5f , 0.0f); } Box::Box( const Float4x4 &r, const Float4 &p, const Float4 &s ) : ICollideable(Type_box) { this->rotation = r; this->center = p; this->boundingOffset = s * 0.5f; } Box::~Box( ) {} Box & Box::operator = ( const Box &box ) { this->rotation = box.rotation; this->center = box.center; this->boundingOffset = box.boundingOffset; return *this; } ::Utility::DynamicMemory::UniquePointer Box::Clone( ) const { return ::Utility::DynamicMemory::UniquePointer( new Box(*this) ); } bool Box::Intersects( const ICollideable &target ) const { switch( target.type ) { case Type_universe: return true; case Type_point: return Utility::Intersect( *this, (const Point&)target ); case Type_ray: return Utility::Intersect( *this, (const Ray&)target, ((const Ray&)target).collisionDistance ); case Type_sphere: return Utility::Intersect( *this, (const Sphere&)target ); case Type_plane: return Utility::Intersect( *this, (const Plane&)target ); // case Type_triangle: return false; // TODO: : case Type_box_axis_aligned: return Utility::Intersect( *this, (const BoxAxisAligned&)target ); case Type_box: return Utility::Intersect( *this, (const Box&)target ); // case Type_frustrum: return false; // TODO: : default: return false; } } bool Box::Intersects( const ICollideable &target, Float4 &worldPointOfContact ) const { switch( target.type ) { case Type_universe: worldPointOfContact = this->center; return true; case Type_point: return Utility::Intersect( *this, (const Point&)target, worldPointOfContact ); case Type_ray: return Utility::Intersect( *this, (const Ray&)target, ((const Ray&)target).collisionDistance, worldPointOfContact ); case Type_sphere: return Utility::Intersect( *this, (const Sphere&)target, worldPointOfContact ); case Type_plane: return Utility::Intersect( *this, (const Plane&)target, worldPointOfContact ); // case Type_triangle: return false; // TODO: : case Type_box_axis_aligned: return Utility::Intersect( *this, (const BoxAxisAligned&)target, worldPointOfContact ); case Type_box: return Utility::Intersect( *this, (const Box&)target, worldPointOfContact ); // case Type_frustrum: return false; // TODO: : default: return false; } } bool Box::Contains( const ICollideable &target ) const { switch( target.type ) { case Type_point: return Utility::Intersect( *this, (const Point&)target ); //case Type_sphere: return false; // TODO: //case Type_triangle: return false; // TODO: //case Type_box_axis_aligned: return false; // TODO: //case Type_box: return false; // TODO: //case Type_frustrum: return false; // TODO: default: return false; } } Float Box::TimeOfContact( const ICollideable &deuterStart, const ICollideable &deuterEnd ) const { if( deuterStart.type != deuterEnd.type ) return -1.0f; switch( deuterStart.type ) { // TODO: more to implement case Type_universe: return 0.0f; default: return 1.0f; } } namespace Oyster { namespace Math { Box & Nlerp( const Box &start, const Box &end, Float t, Box &targetMem ) { InterpolateRotation_UsingRigidNlerp( start.rotation, end.rotation, t, targetMem.rotation ); targetMem.center = Lerp( start.center, end.center, t ); targetMem.boundingOffset = Lerp( start.boundingOffset, end.boundingOffset, t ); return targetMem; } } }