///////////////////////////////////////////////////////////////////// // Created by Dan Andersson 2013 ///////////////////////////////////////////////////////////////////// #ifndef OYSTER_MATH_H #define OYSTER_MATH_H #include "Utilities.h" #include "LinearMath.h" #include namespace Oyster { namespace Math //! Oyster's native math library { typedef float Float; //!< Oyster's native scalar is float typedef ::LinearAlgebra::Vector2 Float2; //!< 2D Linear Vector for Oyster typedef ::LinearAlgebra::Vector3 Float3; //!< 3D Linear Vector for Oyster typedef ::LinearAlgebra::Vector4 Float4; //!< 4D Linear Vector for Oyster typedef ::LinearAlgebra::Matrix2x2 Float2x2; //!< 2x2 Linear Matrix for Oyster typedef ::LinearAlgebra::Matrix3x3 Float3x3; //!< 3x3 Linear Matrix for Oyster typedef ::LinearAlgebra::Matrix4x4 Float4x4; //!< 4x4 Linear Matrix for Oyster typedef ::LinearAlgebra::Quaternion Quaternion; //!< Quaternion for Oyster typedef Float4x4 Matrix; // by popular demand typedef Float2 Vector2; // by popular demand typedef Float3 Vector3; // by popular demand typedef Float4 Vector4; // by popular demand const Float pi = 3.1415926535897932384626433832795f; //! Function Highly recommended to check at start, just in case current version is using a feature that might be available. //! @todo TODO: create a template UniquePointer to use here bool IsSupported(); //! Creates a solution matrix for 'outī= 'targetMem' * 'in'. //! Returns false if there is no explicit solution. bool SuperpositionMatrix( const Float2x2 &in, const Float2x2 &out, Float2x2 &targetMem ); //! Creates a solution matrix for 'outī= 'targetMem' * 'in'. //! Returns false if there is no explicit solution. bool SuperpositionMatrix( const Float3x3 &in, const Float3x3 &out, Float3x3 &targetMem ); //! Creates a solution matrix for 'outī= 'targetMem' * 'in'. //! Returns false if there is no explicit solution. bool SuperpositionMatrix( const Float4x4 &in, const Float4x4 &out, Float4x4 &targetMem ); /******************************************************************** * Linear Interpolation * @return start * (1-t) + end * t ********************************************************************/ using ::LinearAlgebra::Lerp; /******************************************************************** * Normalized Linear Interpolation * @return nullvector if Lerp( start, end, t ) is nullvector. ********************************************************************/ using ::LinearAlgebra::Nlerp; /******************************************************************** * Spherical Linear Interpolation on Quaternions ********************************************************************/ using ::LinearAlgebra::Slerp; } } inline ::Oyster::Math::Float2 & operator *= ( ::Oyster::Math::Float2 &left, const ::Oyster::Math::Float2 &right ) { return left.PiecewiseMultiplicationAdd( right ); } inline ::Oyster::Math::Float2 operator * ( const ::Oyster::Math::Float2 &left, const ::Oyster::Math::Float2 &right ) { return left.PiecewiseMultiplication( right ); } inline ::Oyster::Math::Float3 & operator *= ( ::Oyster::Math::Float3 &left, const ::Oyster::Math::Float3 &right ) { return left.PiecewiseMultiplicationAdd( right ); } inline ::Oyster::Math::Float3 operator * ( const ::Oyster::Math::Float3 &left, const ::Oyster::Math::Float3 &right ) { return left.PiecewiseMultiplication( right ); } inline ::Oyster::Math::Float4 & operator *= ( ::Oyster::Math::Float4 &left, const ::Oyster::Math::Float4 &right ) { return left.PiecewiseMultiplicationAdd( right ); } namespace Oyster { namespace Math2D //! Oyster's native math library specialized for 2D { using namespace ::Oyster::Math; // deliberate inheritance from ::Oyster::Math namespace //! If there is an Y-axis on a 2D plane, then there is an explicit X-axis on and that is what is returned. //! Recommended too make sure that yAxis is normalized. Float2 X_AxisTo( const Float2 &yAxis ); //! If there is an X-axis on a 2D plane, then there is an explicit Y-axis and that is what is returned. //! Recommended too make sure that yAxis is normalized. Float2 Y_AxisTo( const Float2 &xAxis ); //! Sets and returns targetMem to a translationMatrix with position as translation. Float3x3 & TranslationMatrix( const Float2 &position, Float3x3 &targetMem = Float3x3() ); //! Sets and returns targetMem as a counterclockwise rotationMatrix Float3x3 & RotationMatrix( const Float &radian, Float3x3 &targetMem = Float3x3() ); //! If rotation is assumed to be by all definitions a rotation matrix. Then this is a much faster inverse method. Float2x2 & InverseRotationMatrix( const Float2x2 &rotation, Float2x2 &targetMem = Float2x2() ); //! If rotation is assumed to be by all definitions a rotation matrix. Then this is a much faster inverse method. Float3x3 & InverseRotationMatrix( const Float3x3 &rotation, Float3x3 &targetMem = Float3x3() ); //! Sets and returns targetMem as an orientation Matrix composed by the rotation matrix and translation vector Float3x3 & OrientationMatrix( const Float2x2 &rotation, const Float2 &translation, Float3x3 &targetMem = Float3x3() ); //! Sets and returns targetMem as an orientation Matrix composed by the rotation matrix and translation vector Float3x3 & OrientationMatrix( const Float3x3 &rotation, const Float2 &translation, Float3x3 &targetMem = Float3x3() ); //! Sets and returns targetMem as an orientation Matrix with position as translation and radian rotation Float3x3 & OrientationMatrix( const Float2 &position, const Float &radian, Float3x3 &targetMem = Float3x3() ); //! Sets and returns targetMem as an orientation Matrix with position as translation and local y-axis directed at lookAt Float3x3 & OrientationMatrix( const Float2 &position, const Float2 &lookAt, Float3x3 &targetMem = Float3x3() ); //! Sets and returns targetMem as an orientation Matrix that is rotated around localCenterOfRotation and then translated with position. //! TODO: not tested Float3x3 & OrientationMatrix( const Float2 &position, Float radian, const Float2 &localCenterOfRotation, Float3x3 &targetMem = Float3x3() ); //! If orientationMatrix is assumed to be by all definitions a rigid orientation matrix aka rigid body matrix. Then this is a much faster inverse method. Float3x3 & InverseOrientationMatrix( const Float3x3 &orientationMatrix, Float3x3 &targetMem = Float3x3() ); //! Returns targetmem after writing the rotation data from orientation, into it. Float3x3 & ExtractRotationMatrix( const Float3x3 &orientation, Float3x3 &targetMem = Float3x3() ); } } namespace Oyster { namespace Math3D //! Oyster's native math library specialized for 3D { using namespace ::Oyster::Math; // deliberate inheritance from ::Oyster::Math namespace //! Extracts the angularAxis from rotationMatrix //Float4 AngularAxis( const Float3x3 &rotationMatrix ); ////! Extracts the angularAxis from rotationMatrix //Float4 AngularAxis( const Float4x4 &rotationMatrix ); ////! Extracts the angularAxis from orientationMatrix //Float4 ExtractAngularAxis( const Float4x4 &orientationMatrix ); //! Sets and returns targetMem to a translationMatrix with position as translation. Float4x4 & TranslationMatrix( const Float3 &position, Float4x4 &targetMem = Float4x4() ); /** @todo TODO: add doc */ Quaternion Rotation( Float radian, const Float3 &normalizedAxis ); /** @todo TODO: add doc */ Quaternion Rotation( Float radian, const Float3 &normalizedAxis ); /** @todo TODO: add doc */ Quaternion Rotation( const Float3 &angularAxis ); /** @todo TODO: add doc */ Quaternion Rotation( const Float4 &angularAxis ); /** @todo TODO: add doc */ Float4x4 & RotationMatrix( const Quaternion &rotationQuaternion, Float4x4 &targetMem = Float4x4() ); /** @todo TODO: add doc */ Float4x4 & OrientationMatrix( const Quaternion &rotationQuaternion, const Float3 &translation, Float4x4 &targetMem = Float4x4() ); /** @todo TODO: add doc */ Float4x4 & OrientationMatrix( const Quaternion &rotationQuaternion, const Float4 &translation, Float4x4 &targetMem = Float4x4() ); /** @todo TODO: add doc */ Float4x4 & ViewMatrix( const Quaternion &rotationQuaternion, const Float3 &translation, Float4x4 &targetMem = Float4x4() ); /** @todo TODO: add doc */ Float4x4 & ViewMatrix( const Quaternion &rotationQuaternion, const Float4 &translation, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an counterclockwise rotation matrix around the global X-axis Float4x4 & RotationMatrix_AxisX( const Float &radian, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an counterclockwise rotation matrix around the global Y-axis Float4x4 & RotationMatrix_AxisY( const Float &radian, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an counterclockwise rotation matrix around the global Z-axis Float4x4 & RotationMatrix_AxisZ( const Float &radian, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an counterclockwise rotation matrix around the angularAxis. Float4x4 & RotationMatrix( const Float3 &angularAxis, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an counterclockwise rotation matrix around the normalizedAxis. //! Please make sure normalizedAxis is normalized. Float4x4 & RotationMatrix( const Float &radian, const Float3 &normalizedAxis, Float4x4 &targetMem = Float4x4() ); //! If rotation is assumed to be by all definitions a rotation matrix. Then this is a much faster inverse method. Float3x3 & InverseRotationMatrix( const Float3x3 &rotation, Float3x3 &targetMem = Float3x3() ); //! If rotation is assumed to be by all definitions a rotation matrix. Then this is a much faster inverse method. Float4x4 & InverseRotationMatrix( const Float4x4 &rotation, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an orientation Matrix composed by the rotation matrix and translation vector Float4x4 & OrientationMatrix( const Float3x3 &rotation, const Float3 &translation, Float4x4 &targetMem = Float4x4() ); //! Sets and returns targetMem as an orientation Matrix composed by the rotation matrix and translation vector Float4x4 & OrientationMatrix( const Float4x4 &rotation, const Float3 &translation, Float4x4 &targetMem = Float4x4() ); /******************************************************************* * Sets and returns targetMem as an orientation Matrix * @param normalizedAxis: The normalized vector parallell with the rotationAxis. * @param deltaRadian: The rotation angle. * @param sumTranslation: sum of all the translation vectors. * @param targetMem: is set to a rigibody matrix that rotate counterclockwise and then translates. * @return targetMem *******************************************************************/ Float4x4 & OrientationMatrix( const Float3 &normalizedAxis, const Float & deltaRadian, const Float3 &sumTranslation, Float4x4 &targetMem = Float4x4() ); /******************************************************************* * Sets and returns targetMem as an orientation Matrix * @param angularAxis: sum of all ( (1/I) * ( L x D ) )-vectorproducts. There I is known as "moment of inertia", L as "angular momentum vector" and D the "lever vector". * @param translation: sum of all the translation vectors. * @param targetMem: is set to a rigibody matrix that rotate counterclockwise and then translates. * @return targetMem *******************************************************************/ Float4x4 & OrientationMatrix( const Float3 &angularAxis, const Float3 &translation, Float4x4 &targetMem = Float4x4() ); /******************************************************************* * Sets and returns targetMem as a view Matrix * @param angularAxis: sum of all ( (1/I) * ( L x D ) )-vectorproducts. There I is known as "moment of inertia", L as "angular momentum vector" and D the "lever vector". * @param translation: sum of all the translation vectors. * @param targetMem: is set to a rigibody matrix that rotate counterclockwise and then translates. * @return targetMem *******************************************************************/ Float4x4 & ViewMatrix( const Float3 &angularAxis, const Float3 &translation, Float4x4 &targetMem = Float4x4() ); /******************************************************************* * Sets and returns targetMem as an orientation Matrix * @param sumDeltaAngularAxis: sum of all ( (1/I) * ( L x D ) )-vectorproducts. There I is known as "moment of inertia", L as "angular momentum vector" and D the "lever vector". * @param sumTranslation: sum of all the translation vectors. * @param centerOfMass: the point the particles is to revolve around, prior to translation. Default set to null vector aka origo. * @param targetMem: is set to a rigibody matrix that revolve/rotate counterclockwise around centerOfMass and then translates. * @return targetMem * @todo TODO: not tested *******************************************************************/ Float4x4 & OrientationMatrix( const Float3 &sumDeltaAngularAxis, const Float3 &sumTranslation, const Float3 ¢erOfMass, Float4x4 &targetMem = Float4x4() ); //! @todo TODO: Add documentation and not tested Float4x4 & OrientationMatrix_LookAtDirection( const Float3 &normalizedDirection, const Float3 &normalizedUpVector, const Float3 &worldPos, Float4x4 &targetMem = Float4x4() ); //! @todo TODO: Add documentation and not tested Float4x4 & OrientationMatrix_LookAtPos( const Float3 &worldLookAt, const Float3 &normalizedUpVector, const Float3 &worldPos, Float4x4 &targetMem = Float4x4() ); //! @todo TODO: Add documentation and not tested Float4x4 & ViewMatrix_LookAtDirection( const Float3 &normalizedDirection, const Float3 &normalizedUpVector, const Float3 &worldPos, Float4x4 &targetMem = Float4x4() ); //! @todo TODO: Add documentation and not tested Float4x4 & ViewMatrix_LookAtPos( const Float3 &worldLookAt, const Float3 &normalizedUpVector, const Float3 &worldPos, Float4x4 &targetMem = Float4x4() ); //! If orientationMatrix is assumed to be by all definitions a rigid orientation matrix aka rigid body matrix. Then this is a much faster inverse method. Float4x4 & InverseOrientationMatrix( const Float4x4 &orientationMatrix, Float4x4 &targetMem = Float4x4() ); // O0 = T0 * R0 // O1 = T1 * T0 * R1 * R0 Float4x4 & UpdateOrientationMatrix( const Float3 &deltaPosition, const Float4x4 &deltaRotationMatrix, Float4x4 &orientationMatrix ); //! Returns targetmem after writing the rotation data from orientation, into it. Float4x4 & ExtractRotationMatrix( const Float4x4 &orientation, Float4x4 &targetMem = Float4x4() ); /******************************************************************* * Creates an orthographic projection matrix designed for DirectX enviroment. * @param width; of the projection sample volume. * @param height; of the projection sample volume. * @param nearClip: Distance to the nearPlane. * @param farClip: Distance to the farPlane. * @param targetMem; is set to an orthographic projection matrix. * @return targetMem * @todo TODO: not tested *******************************************************************/ Float4x4 & ProjectionMatrix_Orthographic( const Float &width, const Float &height, const Float &nearClip = ::std::numeric_limits::epsilon(), const Float &farClip = ::std::numeric_limits::max(), Float4x4 &targetMem = Float4x4() ); /******************************************************************* * Creates a perspective projection matrix designed for DirectX enviroment. * @param vertFoV; is the vertical field of vision in radians. (lookup FoV Hor+ ) * @param aspect; is the screenratio width/height (example 16/9 or 16/10 ) * @param nearClip: Distance to the nearPlane * @param farClip: Distance to the farPlane * @param targetMem; is set to a perspective transform matrix. * @return targetMem * @todo TODO: not tested *******************************************************************/ Float4x4 & ProjectionMatrix_Perspective( const Float &verticalFoV, const Float &aspectRatio, const Float &nearClip = ::std::numeric_limits::epsilon(), const Float &farClip = ::std::numeric_limits::max(), Float4x4 &targetMem = Float4x4() ); //! returns the component vector of vector that is parallell with axis Float3 VectorProjection( const Float3 &vector, const Float3 &axis ); //! returns the component vector of vector that is parallell with axis Float4 VectorProjection( const Float4 &vector, const Float4 &axis ); //! returns the component vector of vector that is parallell with axis. Faster than VectorProjection. Float3 NormalProjection( const Float3 &vector, const Float3 &normalizedAxis ); //! returns the component vector of vector that is parallell with axis. Faster than VectorProjection. Float4 NormalProjection( const Float4 &vector, const Float4 &normalizedAxis ); //! Helper inline function that sets and then returns targetMem = projection * view inline Float4x4 & ViewProjectionMatrix( const Float4x4 &view, const Float4x4 &projection, Float4x4 &targetMem = Float4x4() ) { return targetMem = projection * view; } /** Helper inline function that sets and then returns targetMem = transformer * transformee */ inline Float4x4 & TransformMatrix( const Float4x4 &transformer, const Float4x4 &transformee, Float4x4 &targetMem ) { return targetMem = transformer * transformee; } /** Helper inline function that sets and then returns transformer * transformee */ inline Float4x4 TransformMatrix( const Float4x4 &transformer, const Float4x4 &transformee ) { return transformer * transformee; } //! Helper inline function that sets and then returns targetMem = transformer * transformee inline Float4 & TransformVector( const Float4x4 &transformer, const Float4 &transformee, Float4 &targetMem = Float4() ) { return targetMem = transformer * transformee; } using ::LinearAlgebra3D::SnapAxisYToNormal_UsingNlerp; using ::LinearAlgebra3D::InterpolateAxisYToNormal_UsingNlerp; using ::LinearAlgebra3D::InterpolateOrientation_UsingNonRigidNlerp; using ::LinearAlgebra3D::InterpolateOrientation_UsingSlerp; using ::LinearAlgebra3D::SnapAngularAxis; } } #endif