#include "Sphere.h" #include "OysterCollision3D.h" using namespace ::Oyster::Collision3D; using namespace ::Oyster::Math; Sphere::Sphere( ) : ICollideable(Type_sphere) { this->center = Float4::standard_unit_w; this->radius = 0.0f; } Sphere::Sphere( const Float3 &p, const Float &r ) : ICollideable(Type_sphere) { this->center = Float4( p, 1.0f ); this->radius = r; } Sphere::Sphere( const Float4 &p, const Float &r ) : ICollideable(Type_sphere) { this->center = p; this->radius = r; } Sphere::~Sphere( ) {} Sphere & Sphere::operator = ( const Sphere &sphere ) { this->center = sphere.center; this->radius = sphere.radius; return *this; } ::Utility::DynamicMemory::UniquePointer Sphere::Clone( ) const { return ::Utility::DynamicMemory::UniquePointer( new Sphere(*this) ); } bool Sphere::Intersects( const ICollideable &target ) const { switch( target.type ) { case Type_universe: return true; case Type_point: return Utility::Intersect( *this, (const Point&)target ); case Type_ray: return Utility::Intersect( *this, (const Ray&)target, ((const Ray&)target).collisionDistance ); case Type_sphere: return Utility::Intersect( *this, (const Sphere&)target ); case Type_plane: return Utility::Intersect( (const Plane&)target, *this ); //case Type_triangle: return false; // TODO: case Type_box_axis_aligned: return Utility::Intersect( (const BoxAxisAligned&)target, *this ); case Type_box: return Utility::Intersect( (const Box&)target, *this ); //case Type_frustrum: return false; // TODO: default: return false; } } bool Sphere::Intersects( const ICollideable &target, Float4 &worldPointOfContact ) const { switch( target.type ) { case Type_universe: worldPointOfContact = this->center; return true; case Type_point: return Utility::Intersect( *this, (const Point&)target, worldPointOfContact ); case Type_ray: return Utility::Intersect( *this, (const Ray&)target, ((const Ray&)target).collisionDistance, worldPointOfContact ); case Type_sphere: return Utility::Intersect( *this, (const Sphere&)target, worldPointOfContact ); case Type_plane: return Utility::Intersect( (const Plane&)target, *this, worldPointOfContact ); //case Type_triangle: return false; // TODO: case Type_box_axis_aligned: return Utility::Intersect( (const BoxAxisAligned&)target, *this, worldPointOfContact ); case Type_box: return Utility::Intersect( (const Box&)target, *this, worldPointOfContact ); //case Type_frustrum: return false; // TODO: default: worldPointOfContact = Float3::null; return false; } } bool Sphere::Contains( const ICollideable &target ) const { switch( target.type ) { case Type_point: return Utility::Intersect( *this, (const Point&)target ); case Type_sphere: return Utility::Contains( *this, (const Sphere&)target ); //case Type_triangle: return false; // TODO: //case Type_box_axis_aligned: return false; // TODO: //case Type_box: return false; // TODO: //case Type_frustrum: return false; // TODO: default: return false; } } Float Sphere::TimeOfContact( const ICollideable &deuterStart, const ICollideable &deuterEnd ) const { if( deuterStart.type != deuterEnd.type ) return -1.0f; switch( deuterStart.type ) { //case Type_point: // not implemented //case Type_sphere: // not implemented //case Type_box: // not implemented case Type_universe: return 0.0f; default: return 1.0f; } } namespace Oyster { namespace Math { Sphere & Nlerp( const Sphere &start, const Sphere &end, Float t, Sphere &targetMem ) { Float4 i = Lerp( Float4(start.center.xyz, start.radius), Float4(end.center.xyz, end.radius), t ); targetMem.center.xyz = i.xyz; targetMem.radius = i.w; return targetMem; } } }