#include "SimpleRigidBody.h" #include "PhysicsAPI_Impl.h" using namespace ::Oyster::Physics; using namespace ::Oyster::Physics3D; using namespace ::Oyster::Math3D; using namespace ::Oyster::Collision3D; using namespace ::Utility::DynamicMemory; using namespace ::Utility::Value; namespace Private { const Float epsilon = (const Float)1e-20; // Float calculations can suffer roundingerrors. Which is where epsilon = 1e-20 comes into the picture inline bool EqualsZero( const Float &value ) { // by Dan Andersson return Abs( value ) < epsilon; } inline bool Contains( const Plane &container, const Float4 &pos ) { // by Dan Andersson return EqualsZero( container.normal.Dot( pos ) + container.phasing ); } // revision of Ray Vs Plane intersect test, there ray is more of an axis bool Intersects( const Ray &axis, const Plane &plane, Float &connectDistance ) { // by Dan Andersson Float c = plane.normal.Dot(axis.direction); if( EqualsZero(c) ) { // axis is parallell with the plane. (axis direction orthogonal with the planar normal) connectDistance = 0.0f; return Contains( plane, axis.origin ); } connectDistance = -plane.phasing; connectDistance -= plane.normal.Dot( axis.origin ); connectDistance /= c; return true; } } SimpleRigidBody::SimpleRigidBody() { this->rigid = RigidBody(); this->rigid.SetMass_KeepMomentum( 16.0f ); this->gravityNormal = Float3::null; this->onCollision = Default::EventAction_BeforeCollisionResponse; this->onCollisionResponse = Default::EventAction_AfterCollisionResponse; this->onMovement = Default::EventAction_Move; this->collisionRebound.previousSpatial.center = this->rigid.centerPos; this->collisionRebound.previousSpatial.axis = this->rigid.axis; this->collisionRebound.previousSpatial.reach = this->rigid.boundingReach; this->collisionRebound.timeOfContact = 1.0f; this->scene = nullptr; this->customTag = nullptr; this->ignoreGravity = this->isForwarded = false; } SimpleRigidBody::SimpleRigidBody( const API::SimpleBodyDescription &desc ) { this->rigid = RigidBody(); this->rigid.SetRotation( desc.rotation ); this->rigid.centerPos = desc.centerPosition; this->rigid.SetSize( desc.size ); this->rigid.restitutionCoeff = desc.restitutionCoeff; this->rigid.frictionCoeff_Static = desc.frictionCoeff_Static; this->rigid.frictionCoeff_Kinetic = desc.frictionCoeff_Dynamic; this->rigid.SetMass_KeepMomentum( desc.mass ); this->rigid.SetMomentOfInertia_KeepMomentum( desc.inertiaTensor ); this->deltaPos = Float4::null; this->deltaAxis = Float4::null; this->gravityNormal = Float3::null; this->collisionRebound.previousSpatial.center = this->rigid.centerPos; this->collisionRebound.previousSpatial.axis = this->rigid.axis; this->collisionRebound.previousSpatial.reach = this->rigid.boundingReach; this->collisionRebound.timeOfContact = 1.0f; if( desc.subscription_onCollision ) { this->onCollision = desc.subscription_onCollision; } else { this->onCollision = Default::EventAction_BeforeCollisionResponse; } if( desc.subscription_onCollisionResponse ) { this->onCollisionResponse = desc.subscription_onCollisionResponse; } else { this->onCollisionResponse = Default::EventAction_AfterCollisionResponse; } if( desc.subscription_onMovement ) { this->onMovement= desc.subscription_onMovement; } else { this->onMovement = Default::EventAction_Move; } this->scene = nullptr; this->customTag = nullptr; this->ignoreGravity = desc.ignoreGravity; this->collisionRebound.previousSpatial.center = this->rigid.centerPos; this->collisionRebound.previousSpatial.axis = this->rigid.axis; this->collisionRebound.previousSpatial.reach = this->rigid.boundingReach; this->collisionRebound.timeOfContact = 1.0f; } SimpleRigidBody::~SimpleRigidBody() {} UniquePointer SimpleRigidBody::Clone() const { return new SimpleRigidBody( *this ); } SimpleRigidBody::State SimpleRigidBody::GetState() const { return State( this->rigid.GetMass(), this->rigid.restitutionCoeff, this->rigid.frictionCoeff_Static, this->rigid.frictionCoeff_Kinetic, this->rigid.GetMomentOfInertia(), this->rigid.boundingReach, this->rigid.centerPos, this->rigid.axis, this->rigid.momentum_Linear, this->rigid.momentum_Angular, this->rigid.gravityNormal ); } SimpleRigidBody::State & SimpleRigidBody::GetState( SimpleRigidBody::State &targetMem ) const { return targetMem = State( this->rigid.GetMass(), this->rigid.restitutionCoeff, this->rigid.frictionCoeff_Static, this->rigid.frictionCoeff_Kinetic, this->rigid.GetMomentOfInertia(), this->rigid.boundingReach, this->rigid.centerPos, this->rigid.axis, this->rigid.momentum_Linear, this->rigid.momentum_Angular, this->rigid.gravityNormal ); } void SimpleRigidBody::SetState( const SimpleRigidBody::State &state ) { this->rigid.centerPos = state.GetCenterPosition(); this->rigid.axis = state.GetAngularAxis(); this->rigid.boundingReach = state.GetReach(); this->rigid.momentum_Linear = state.GetLinearMomentum(); this->rigid.momentum_Angular = state.GetAngularMomentum(); this->rigid.impulse_Linear += state.GetLinearImpulse(); this->rigid.impulse_Angular += state.GetAngularImpulse(); this->rigid.restitutionCoeff = state.GetRestitutionCoeff(); this->rigid.frictionCoeff_Static = state.GetFrictionCoeff_Static(); this->rigid.frictionCoeff_Kinetic = state.GetFrictionCoeff_Kinetic(); this->rigid.SetMass_KeepMomentum( state.GetMass() ); this->rigid.SetMomentOfInertia_KeepMomentum( state.GetMomentOfInertia() ); this->rigid.gravityNormal = state.GetGravityNormal(); if( state.IsForwarded() ) { this->deltaPos += Float4(state.GetForward_DeltaPos(), 0); this->deltaAxis += Float4(state.GetForward_DeltaAxis(), 0); this->isForwarded; } if( this->scene ) { if( state.IsSpatiallyAltered() ) { unsigned int tempRef = this->scene->GetTemporaryReferenceOf( this ); this->scene->SetAsAltered( tempRef ); this->scene->EvaluatePosition( tempRef ); } else if( state.IsDisturbed() ) { this->scene->SetAsAltered( this->scene->GetTemporaryReferenceOf(this) ); } } } ICustomBody::SubscriptMessage SimpleRigidBody::CallSubscription_BeforeCollisionResponse( const ICustomBody *deuter ) { return this->onCollision( this, deuter ); } void SimpleRigidBody::CallSubscription_AfterCollisionResponse( const ICustomBody *deuter, Float kineticEnergyLoss ) { return this->onCollisionResponse( this, deuter, kineticEnergyLoss ); } void SimpleRigidBody::CallSubscription_Move() { this->onMovement( this ); } bool SimpleRigidBody::IsAffectedByGravity() const { return !this->ignoreGravity; } bool SimpleRigidBody::Intersects( const ICollideable &shape ) const { return Box( this->rigid.GetRotationMatrix(), this->rigid.centerPos, this->rigid.GetSize() ).Intersects( shape ); } bool SimpleRigidBody::Intersects( const ICollideable &shape, Float4 &worldPointOfContact ) const { return Box( this->rigid.GetRotationMatrix(), this->rigid.centerPos, this->rigid.GetSize() ).Intersects( shape, worldPointOfContact ); } bool SimpleRigidBody::Intersects( const ICustomBody &object, Float4 &worldPointOfContact ) const { return object.Intersects( Box(this->rigid.GetRotationMatrix(), this->rigid.centerPos, this->rigid.GetSize()), worldPointOfContact ); } void SimpleRigidBody::SetTimeOfContact( Float4 &worldPointOfContact ) { Point pointOfContact = Point( worldPointOfContact ); Box start = Box(); { start.rotation = RotationMatrix( this->collisionRebound.previousSpatial.axis ); start.center = this->collisionRebound.previousSpatial.center; start.boundingOffset = this->collisionRebound.previousSpatial.reach; } Box end = Box(); { end.rotation = RotationMatrix( this->rigid.axis ); end.center = this->rigid.centerPos; end.boundingOffset = this->rigid.boundingReach; } Float timeOfContact = ::Oyster::Collision3D::Utility::TimeOfContact( start, end, pointOfContact ); this->collisionRebound.timeOfContact = Min( this->collisionRebound.timeOfContact, timeOfContact ); } Sphere & SimpleRigidBody::GetBoundingSphere( Sphere &targetMem ) const { return targetMem = Sphere( this->rigid.centerPos, this->rigid.boundingReach.GetMagnitude() ); } Float4 & SimpleRigidBody::GetNormalAt( const Float4 &worldPos, Float4 &targetMem ) const { Float4 offset = worldPos.xyz - this->rigid.centerPos; Float distance = offset.Dot( offset ); Float3 normal = Float3::null; if( distance != 0.0f ) { // sanity check Ray axis( Float4::standard_unit_w, offset / (Float)::std::sqrt(distance) ); Float minDistance = numeric_limits::max(); Float4x4 rotationMatrix = this->rigid.GetRotationMatrix(); if( Private::Intersects(axis, Plane(rotationMatrix.v[0], -this->rigid.boundingReach.x), axis.collisionDistance) ) { // check along x-axis if( axis.collisionDistance < 0.0f ) normal = -rotationMatrix.v[0].xyz; else normal = rotationMatrix.v[0].xyz; minDistance = Abs( axis.collisionDistance ); } if( Private::Intersects(axis, Plane(rotationMatrix.v[1], -this->rigid.boundingReach.y), axis.collisionDistance) ) { // check along y-axis distance = Abs( axis.collisionDistance ); // recycling memory if( minDistance > distance ) { if( axis.collisionDistance < 0.0f ) normal = -rotationMatrix.v[1].xyz; else normal = rotationMatrix.v[1].xyz; minDistance = distance; } } if( Private::Intersects(axis, Plane(rotationMatrix.v[2], -this->rigid.boundingReach.z), axis.collisionDistance) ) { // check along z-axis if( minDistance > Abs( axis.collisionDistance ) ) { if( axis.collisionDistance < 0.0f ) normal = -rotationMatrix.v[2].xyz; else normal = rotationMatrix.v[2].xyz; } } } targetMem.xyz = normal; targetMem.w = 0.0f; return targetMem; } Float3 & SimpleRigidBody::GetGravityNormal( Float3 &targetMem ) const { return targetMem = this->gravityNormal; } void * SimpleRigidBody::GetCustomTag() const { return this->customTag; } //Float3 & SimpleRigidBody::GetCenter( Float3 &targetMem ) const //{ // return targetMem = this->rigid.centerPos; //} // //Float4x4 & SimpleRigidBody::GetRotation( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.box.rotation; //} // //Float4x4 & SimpleRigidBody::GetOrientation( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.GetOrientation(); //} // //Float4x4 & SimpleRigidBody::GetView( Float4x4 &targetMem ) const //{ // return targetMem = this->rigid.GetView(); //} //Float3 SimpleRigidBody::GetRigidLinearVelocity() const //{ // return this->rigid.GetLinearVelocity(); //} UpdateState SimpleRigidBody::Update( Float timeStepLength ) { if( this->collisionRebound.timeOfContact < 1.0f ) { // Rebound if needed this->rigid.centerPos = Lerp( this->collisionRebound.previousSpatial.center, this->rigid.centerPos, this->collisionRebound.timeOfContact ); this->rigid.SetRotation( Lerp(this->collisionRebound.previousSpatial.axis, this->rigid.axis, this->collisionRebound.timeOfContact) ); this->rigid.boundingReach = Lerp( this->collisionRebound.previousSpatial.reach, this->rigid.boundingReach, this->collisionRebound.timeOfContact ); timeStepLength *= 2.0f - this->collisionRebound.timeOfContact; // compensate for rebounded time this->collisionRebound.timeOfContact = 1.0f; } // Maintain rotation resolution by keeping axis within [0, 2pi] (trigonometric methods gets faster too) Float4 temp; ::std::modf( this->rigid.axis * (0.5f / pi), temp.xyz ); this->rigid.axis -= ((2.0f * pi) * temp).xyz; // Update rebound data this->collisionRebound.previousSpatial.center = this->rigid.centerPos; this->collisionRebound.previousSpatial.axis = this->rigid.axis; this->collisionRebound.previousSpatial.reach = this->rigid.boundingReach; // Check if this is close enough to be set resting temp = Float4( this->rigid.impulse_Linear, 0.0f ) + Float4( this->rigid.impulse_Angular, 0.0f ); if( temp.Dot(temp) <= (Constant::epsilon * Constant::epsilon) ) { unsigned char resting = 0; if( this->rigid.momentum_Linear.Dot(this->rigid.momentum_Linear) <= (Constant::epsilon * Constant::epsilon) ) { this->rigid.momentum_Linear = Float3::null; resting = 1; } if( this->rigid.momentum_Angular.Dot(this->rigid.momentum_Angular) <= (Constant::epsilon * Constant::epsilon) ) { this->rigid.momentum_Angular = Float3::null; ++resting; } if( resting == 2 ) { this->rigid.impulse_Linear = this->rigid.impulse_Angular = Float3::null; return UpdateState_resting; } } this->rigid.Update_LeapFrog( timeStepLength ); return UpdateState_altered; } void SimpleRigidBody::Predict( Float4 &outDeltaPos, Float4 &outDeltaAxis, const Float4 &actingLinearImpulse, const Float4 &actingAngularImpulse, Float deltaTime ) { this->rigid.Predict_LeapFrog( outDeltaPos.xyz, outDeltaAxis.xyz, actingLinearImpulse.xyz, actingAngularImpulse.xyz, deltaTime ); } void SimpleRigidBody::SetScene( void *scene ) { this->scene = (Octree*)scene; } void SimpleRigidBody::SetSubscription( ICustomBody::EventAction_BeforeCollisionResponse functionPointer ) { if( functionPointer ) { this->onCollision = functionPointer; } else { this->onCollision = Default::EventAction_BeforeCollisionResponse; } } void SimpleRigidBody::SetSubscription( ICustomBody::EventAction_AfterCollisionResponse functionPointer ) { if( functionPointer ) { this->onCollisionResponse = functionPointer; } else { this->onCollisionResponse = Default::EventAction_AfterCollisionResponse; } } void SimpleRigidBody::SetSubscription( ICustomBody::EventAction_Move functionPointer ) { if( functionPointer ) { this->onMovement = functionPointer; } else { this->onMovement = Default::EventAction_Move; } } void SimpleRigidBody::SetGravity( bool ignore) { this->ignoreGravity = ignore; this->gravityNormal = Float3::null; } void SimpleRigidBody::SetGravityNormal( const Float3 &normalizedVector ) { this->gravityNormal = normalizedVector; this->rigid.gravityNormal = Float4( this->gravityNormal, 0 ); } void SimpleRigidBody::SetCustomTag( void *ref ) { this->customTag = ref; } //void SimpleRigidBody::SetMomentOfInertiaTensor_KeepVelocity( const Float4x4 &localI ) //{ // this->rigid.SetMomentOfInertia_KeepVelocity( localI ); //} // //void SimpleRigidBody::SetMomentOfInertiaTensor_KeepMomentum( const Float4x4 &localI ) //{ // this->rigid.SetMomentOfInertia_KeepMomentum( localI ); //} // //void SimpleRigidBody::SetMass_KeepVelocity( Float m ) //{ // this->rigid.SetMass_KeepVelocity( m ); //} // //void SimpleRigidBody::SetMass_KeepMomentum( Float m ) //{ // this->rigid.SetMass_KeepMomentum( m ); //} // //void SimpleRigidBody::SetCenter( const Float3 &worldPos ) //{ // this->rigid.SetCenter( worldPos ); //} // //void SimpleRigidBody::SetRotation( const Float4x4 &rotation ) //{ // this->rigid.SetRotation( rotation ); //} // //void SimpleRigidBody::SetOrientation( const Float4x4 &orientation ) //{ // this->rigid.SetOrientation( orientation ); //} // //void SimpleRigidBody::SetSize( const Float3 &size ) //{ // this->rigid.SetSize( size ); //} // //void SimpleRigidBody::SetMomentum( const Float3 &worldG ) //{ // this->rigid.SetLinearMomentum( worldG ); //}