#include "DefaultRenderer.h" #include "Resources.h" #include "../Definitions/GraphicalDefinition.h" #include "../Model/ModelInfo.h" #include "../DllInterfaces/GFXAPI.h" #include #include namespace Oyster { namespace Graphics { namespace Render { Definitions::Pointlight pl; void DefaultRenderer::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights) { Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(1,0,0,1)); Preparations::Basic::ClearRTV(Resources::GBufferRTV,Resources::GBufferSize,Math::Float4(0,0,0,0)); Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Gather::Pass); Lights[1]; void* data; Definitions::LightConstants lc; lc.InvProj = Projection.GetInverse(); lc.Pixels = Core::resolution; lc.Lights = numLights; lc.View = View; lc.Proj = Projection; lc.SSAORadius = 3; data = Resources::Light::LightConstantsData.Map(); memcpy(data, &lc, sizeof(Definitions::LightConstants)); Resources::Light::LightConstantsData.Unmap(); data = Resources::Light::PointLightsData.Map(); memcpy(data, Lights, sizeof(Definitions::Pointlight) * numLights); Resources::Light::PointLightsData.Unmap(); Definitions::PostData pd; pd.x = (int)lc.Pixels.x; pd.y = (int)lc.Pixels.y; data = Resources::Post::Data.Map(); memcpy(data, &pd, sizeof(Definitions::PostData)); Resources::Post::Data.Unmap(); } void DefaultRenderer::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection, float deltaTime) { for(int i = 0; i < count; ++i) { if(&models[i] == NULL) continue; if(models[i].Visible) { Definitions::PerModel pm; pm.WV = View * models[i].WorldMatrix; pm.WVP = Projection * pm.WV; Model::ModelInfo* info = models[i].info; Definitions::AnimationData am; //final if(info->Animated && models[i].Animation.AnimationPlaying != NULL) { models[i].Animation.AnimationTime += deltaTime; ////store inverse absolut transform Math::Matrix SkinTransform[100]; Math::Matrix BoneAnimated[100]; Math::Matrix BoneAbsAnimated[100]; for(int b = 0; b BoneCount; ++b) { Model::Bone Bone = info->bones[b]; SkinTransform[b] = Bone.Absolute.GetInverse(); BoneAnimated[b] = Bone.Relative; BoneAbsAnimated[b] = Bone.Absolute; } int b = 0; Model::Animation A = *models[i].Animation.AnimationPlaying; while(models[i].Animation.AnimationTime>A.duration && models[i].Animation.LoopAnimation) models[i].Animation.AnimationTime -= (float)A.duration; float position = models[i].Animation.AnimationTime; for(int b = 0; b < A.Bones;++b) { //find current frame int nrOfFrames = A.Frames[b]; Model::Frame PFrame = A.Keyframes[b][nrOfFrames-1]; Model::Frame NFrame = A.Keyframes[b][nrOfFrames-1]; bool FrameFound = false; for (int i = 0; i < nrOfFrames; i++) { if(position < A.Keyframes[b][i].time) { PFrame = A.Keyframes[b][i-1]; NFrame = A.Keyframes[b][i]; break; } } float denominator = (float)(NFrame.time - PFrame.time); if(denominator == 0) { BoneAnimated[PFrame.bone.Parent] = PFrame.bone.Relative; continue; } float inter = (float)((position - PFrame.time) / denominator); Math3D::InterpolateOrientation_UsingNonRigidNlerp(PFrame.bone.Relative,NFrame.bone.Relative,inter, BoneAnimated[PFrame.bone.Parent]); } ////calculate Absolute Animation Transform for(int b = 0; b < info->BoneCount; ++b) { BoneAbsAnimated[b] = BoneAbsAnimated[info->bones[b].Parent] * BoneAnimated[b]; } //write data to am for(int b = 0; b < info->BoneCount; ++b) { am.AnimatedData[b] = (BoneAbsAnimated[b] * SkinTransform[b]); } void *data = Resources::Gather::AnimationData.Map(); memcpy(data,&am,sizeof(Definitions::AnimationData)); Resources::Gather::AnimationData.Unmap(); pm.Animated = 1; } else pm.Animated = 0; void* data = Resources::Gather::ModelData.Map(); memcpy(data,&(pm),sizeof(pm)); Resources::Gather::ModelData.Unmap(); data = Render::Resources::Color.Map(); memcpy(data,&models[i].Tint,sizeof(Math::Float3)); Render::Resources::Color.Unmap(); if(info->Material.size()) { Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0])); } info->Vertices->Apply(); if(info->Indexed) { info->Indecies->Apply(); Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0); } else { Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0); } } } } void BlurGlow() { Definitions::BlurrData bd; bd.BlurMask = Math::Float4(1,1,1,1); bd.StopX = Core::resolution.x/2; bd.StopY = Core::resolution.y; bd.StartX = 0; bd.StartY = Core::resolution.y/2; void* data = Resources::Blur::Data.Map(); memcpy(data,&bd,sizeof(Definitions::BlurrData)); Resources::Blur::Data.Unmap(); Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass); Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1); Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass); Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1); } void BlurSSAO() { Definitions::BlurrData bd; bd.BlurMask = Math::Float4(0,0,0,1); bd.StopX = Core::resolution.x/2; bd.StopY = Core::resolution.y/2; bd.StartX = 0; bd.StartY = 0; void* data = Resources::Blur::Data.Map(); memcpy(data,&bd,sizeof(Definitions::BlurrData)); Resources::Blur::Data.Unmap(); Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass); Core::deviceContext->Dispatch((UINT)((Core::resolution.x/2 + 127U) / 128U), (UINT)(Core::resolution.y/2), 1); Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass); Core::deviceContext->Dispatch((UINT)(Core::resolution.x/2), (UINT)((Core::resolution.y/2 + 127U) / 128U), 1); } void DefaultRenderer::EndFrame() { Core::PipelineManager::SetRenderPass(Resources::Light::Pass); Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1); BlurGlow(); BlurSSAO(); Core::PipelineManager::SetRenderPass(Resources::Post::Pass); Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1); Core::swapChain->Present(0,0); } } } }