Danbias/Code/OysterPhysics3D/OysterCollision3D.cpp

1107 lines
36 KiB
C++

/////////////////////////////////////////////////////////////////////
// Created by Dan Andersson 2013
/////////////////////////////////////////////////////////////////////
#include "OysterCollision3D.h"
#include "Utilities.h"
#include <limits>
using namespace ::Oyster::Math3D;
using namespace ::Utility::Value;
namespace Oyster { namespace Collision3D { namespace Utility
{
// PRIVATE HEADER ///////////////////////////////////////////////////
namespace Private
{
const Float epsilon = (const Float)1e-20;
// Float calculations can suffer roundingerrors. Which is where epsilon = 1e-20 comes into the picture
inline bool EqualsZero( const Float &value )
{ // by Dan Andersson
return Abs( value ) < epsilon;
}
// Float calculations can suffer roundingerrors. Which is where epsilon = 1e-20 comes into the picture
inline bool NotEqualsZero( const Float &value )
{ // by Dan Andersson
return Abs( value ) > epsilon;
}
// returns true if miss/reject
bool BoxVsRayPerSlabCheck( const Float4 &axis, const Float &boundingOffset, const Float4 &deltaPos, const Float4 rayDirection, Float &tMin, Float &tMax )
{ // by Dan Andersson
Float e = axis.Dot( deltaPos ),
f = axis.Dot( rayDirection );
if( EqualsZero(f) ) // if axis is not parallell with ray
{
Float t1 = e + boundingOffset,
t2 = e - boundingOffset;
t1 /= f; t2 /= f;
if( t1 > t2 ) ::Utility::Element::Swap( t1, t2 );
tMin = Max( tMin, t1 );
tMax = Min( tMax, t2 );
if( tMin > tMax ) return true;
if( tMax < 0.0f ) return true;
}
else if( boundingOffset < -e ) return true;
else if( boundingOffset < e ) return true;
return false;
}
inline bool Contains( const Plane &container, const Float4 &pos )
{ // by Dan Andersson
return EqualsZero( container.normal.Dot( pos ) + container.phasing );
}
inline void Compare( Float &connectOffset, const Plane &plane, const Float4 &pos )
{ // by Dan Andersson
connectOffset = plane.normal.Dot(pos);
connectOffset += plane.phasing;
}
void Compare( Float &boxExtend, Float &centerDistance, const Plane &plane, const BoxAxisAligned &box )
{ // by Dan Andersson
Float4 c = (box.maxVertex + box.minVertex) * 0.5f, // box.Center
h = (box.maxVertex - box.minVertex) * 0.5f; // box.halfSize
boxExtend = h.x * Abs(plane.normal.x); // Box max extending towards plane
boxExtend += h.y * Abs(plane.normal.y);
boxExtend += h.z * Abs(plane.normal.z);
centerDistance = c.Dot(plane.normal) + plane.phasing; // distance between box center and plane
}
void Compare( Float &boxExtend, Float &centerDistance, const Plane &plane, const Box &box )
{ // by Dan Andersson
boxExtend = box.boundingOffset.x * Abs(plane.normal.Dot(box.xAxis)); // Box max extending towards plane
boxExtend += box.boundingOffset.y * Abs(plane.normal.Dot(box.yAxis));
boxExtend += box.boundingOffset.z * Abs(plane.normal.Dot(box.zAxis));
centerDistance = box.center.Dot(plane.normal) + plane.phasing; // distance between box center and plane
}
bool SeperatingAxisTest_AxisAlignedVsTransformedBox( const Float4 &boundingOffsetA, const Float4 &boundingOffsetB, const Float4x4 &rotationB, const Float4 &worldOffset )
{ // by Dan Andersson
/*****************************************************************
* Uses the Seperating Axis Theorem
* if( |t dot s| > hA dot |s * RA| + hB dot |s * RB| ) then not intersecting
* |t dot s| > hA dot |s| + hB dot |s * RB| .. as RA = I
*
* t: objectB's offset from objectA [worldOffset]
* s: current comparison axis
* hA: boundingReach vector of objectA. Only absolute values is assumed. [boundingOffsetA]
* hB: boundingReach vector of objectB. Only absolute values is assumed. [boundingOffsetB]
* RA: rotation matrix of objectA. Is identity matrix here, thus omitted.
* RB: rotation matrix of objectB. Is transformed into objectA's view at this point. [rotationB]
*
* Note: s * RB = (RB^T * s)^T = (RB^-1 * s)^T .... vector == vector^T
*****************************************************************/
Float4x4 absRotationB = Abs(rotationB);
Float3 absWorldOffset = Abs(worldOffset); // |t|: [absWorldOffset]
// s = { 1, 0, 0 } [ RA.v[0] ]
if( absWorldOffset.x > boundingOffsetA.x + boundingOffsetB.Dot(Float4(absRotationB.v[0].x, absRotationB.v[1].x, absRotationB.v[2].x, 0.0f)) )
{ // |t dot s| > hA dot |s| + hB dot |s * RB| -->> t.x > hA.x + hB dot |{RB.v[0].x, RB.v[1].x, RB.v[2].x}|
return false;
}
// s = { 0, 1, 0 } [ RA.v[1] ]
if( absWorldOffset.y > boundingOffsetA.y + boundingOffsetB.Dot(Float4(absRotationB.v[0].y, absRotationB.v[1].y, absRotationB.v[2].y, 0.0f)) )
{ // t.y > hA.y + hB dot |{RB.v[0].y, RB.v[1].y, RB.v[2].y}|
return false;
}
// s = { 0, 0, 1 } [ RA.v[2] ]
if( absWorldOffset.z > boundingOffsetA.z + boundingOffsetB.Dot(Float4(absRotationB.v[0].z, absRotationB.v[1].z, absRotationB.v[2].z, 0.0f)) )
{ // t.z > hA.z + hB dot |{RB.v[0].z, RB.v[1].z, RB.v[2].z}|
return false;
}
// s = RB.v[0].xyz
if( Abs(worldOffset.Dot(rotationB.v[0])) > boundingOffsetA.Dot(absRotationB.v[0]) + boundingOffsetB.x )
{ // |t dot s| > hA dot |s| + hB dot |s * RB| -->> |t dot s| > hA dot |s| + hB dot |{1, 0, 0}| -->> |t dot s| > hA dot |s| + hB.x
return false;
}
// s = RB.v[1].xyz
if( Abs(worldOffset.Dot(rotationB.v[1])) > boundingOffsetA.Dot(absRotationB.v[1]) + boundingOffsetB.y )
{ // |t dot s| > hA dot |s| + hB.y
return false;
}
// s = RB.v[2].xyz
if( Abs(worldOffset.Dot(rotationB.v[2])) > boundingOffsetA.Dot(absRotationB.v[2]) + boundingOffsetB.z )
{ // |t dot s| > hA dot |s| + hB.z
return false;
}
// s = ( 1,0,0 ) x rotationB.v[0].xyz:
Float d = boundingOffsetA.y * absRotationB.v[0].z;
d += boundingOffsetA.z * absRotationB.v[0].y;
d += boundingOffsetB.y * absRotationB.v[2].x;
d += boundingOffsetB.z * absRotationB.v[1].x;
if( Abs(worldOffset.z*rotationB.v[0].y - worldOffset.y*rotationB.v[0].z) > d ) return false;
// s = ( 1,0,0 ) x rotationB.v[1].xyz:
d = boundingOffsetA.y * absRotationB.v[1].z;
d += boundingOffsetA.z * absRotationB.v[1].y;
d += boundingOffsetB.x * absRotationB.v[2].x;
d += boundingOffsetB.z * absRotationB.v[0].x;
if( Abs(worldOffset.z*rotationB.v[1].y - worldOffset.y*rotationB.v[1].z) > d ) return false;
// s = ( 1,0,0 ) x rotationB.v[2].xyz:
d = boundingOffsetA.y * absRotationB.v[2].z;
d += boundingOffsetA.z * absRotationB.v[2].y;
d += boundingOffsetB.x * absRotationB.v[1].x;
d += boundingOffsetB.y * absRotationB.v[0].x;
if( Abs(worldOffset.z*rotationB.v[2].y - worldOffset.y*rotationB.v[2].z) > d ) return false;
// s = ( 0,1,0 ) x rotationB.v[0].xyz:
d = boundingOffsetA.x * absRotationB.v[0].z;
d += boundingOffsetA.z * absRotationB.v[0].x;
d += boundingOffsetB.y * absRotationB.v[2].y;
d += boundingOffsetB.z * absRotationB.v[1].y;
if( Abs(worldOffset.x*rotationB.v[0].z - worldOffset.z*rotationB.v[0].x) > d ) return false;
// s = ( 0,1,0 ) x rotationB.v[1].xyz:
d = boundingOffsetA.x * absRotationB.v[1].z;
d += boundingOffsetA.z * absRotationB.v[1].x;
d += boundingOffsetB.x * absRotationB.v[2].y;
d += boundingOffsetB.z * absRotationB.v[0].y;
if( Abs(worldOffset.x*rotationB.v[1].z - worldOffset.z*rotationB.v[1].x) > d ) return false;
// s = ( 0,1,0 ) x rotationB.v[2].xyz:
d = boundingOffsetA.x * absRotationB.v[2].z;
d += boundingOffsetA.z * absRotationB.v[2].x;
d += boundingOffsetB.x * absRotationB.v[1].y;
d += boundingOffsetB.y * absRotationB.v[0].y;
if( Abs(worldOffset.x*rotationB.v[2].z - worldOffset.z*rotationB.v[2].x) > d ) return false;
// s = ( 0,0,1 ) x rotationB.v[0].xyz:
d = boundingOffsetA.x * absRotationB.v[0].y;
d += boundingOffsetA.y * absRotationB.v[0].x;
d += boundingOffsetB.y * absRotationB.v[2].z;
d += boundingOffsetB.z * absRotationB.v[1].z;
if( Abs(worldOffset.y*rotationB.v[0].x - worldOffset.x*rotationB.v[0].y) > d ) return false;
// s = ( 0,0,1 ) x rotationB.v[1].xyz:
d = boundingOffsetA.x * absRotationB.v[1].y;
d += boundingOffsetA.y * absRotationB.v[1].x;
d += boundingOffsetB.x * absRotationB.v[2].z;
d += boundingOffsetB.z * absRotationB.v[0].z;
if( Abs(worldOffset.y*rotationB.v[1].x - worldOffset.x*rotationB.v[1].y) > d ) return false;
// s = ( 0,0,1 ) x rotationB.v[2].xyz:
d = boundingOffsetA.x * absRotationB.v[2].y;
d += boundingOffsetA.y * absRotationB.v[2].x;
d += boundingOffsetB.x * absRotationB.v[1].z;
d += boundingOffsetB.y * absRotationB.v[0].z;
if( Abs(worldOffset.y*rotationB.v[2].x - worldOffset.x*rotationB.v[2].y) > d ) return false;
return true;
}
bool SeperatingAxisTest_AxisAlignedVsTransformedBox( const Float4 &boundingOffsetA, const Float4 &boundingOffsetB, const Float4x4 &rotationB, const Float4 &worldOffset, Float4 &localPointOfContact )
{ // by Dan Andersson
/*****************************************************************
* Uses the Seperating Axis Theorem
* if( |t dot s| > hA dot |s * RA| + hB dot |s * RB| ) then not intersecting
* |t dot s| > hA dot |s| + hB dot |s * RB| .. as RA = I
*
* t: objectB's offset from objectA [worldOffset]
* s: current comparison axis
* hA: boundingReach vector of objectA. Only absolute values is assumed. [boundingOffsetA]
* hB: boundingReach vector of objectB. Only absolute values is assumed. [boundingOffsetB]
* RA: rotation matrix of objectA. Is identity matrix here, thus omitted.
* RB: rotation matrix of objectB. Is transformed into objectA's view at this point. [rotationB]
*
* Note: s * RB = (RB^T * s)^T = (RB^-1 * s)^T .... vector == vector^T
*****************************************************************/
/*****************************************************************
* Distance Alghorithm based on .. something Dan came up with
* pi = si * ( (t dot si) * (hA dot |si|) / (hA dot |si| + hB dot |si * RB|) )
* p = estimated point of contact
* = ( p1 + p2 + ... + p5 + p6 ) / 2
*****************************************************************/
const Float4 &t = worldOffset,
&hA = boundingOffsetA,
&hB = boundingOffsetB;
Float4 s = Float4::standard_unit_x;
Float centerSeperation = t.Dot(s),
eA = hA.Dot( Abs(s) ),
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact = s * ( centerSeperation * eA / edgeSeperation );
s = Float4::standard_unit_y;
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact += s * ( centerSeperation * eA / edgeSeperation );
s = Float4::standard_unit_z;
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact += s * ( centerSeperation * eA / edgeSeperation );
s = rotationB.v[0];
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact += s * ( centerSeperation * eA / edgeSeperation );
s = rotationB.v[1];
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact += s * ( centerSeperation * eA / edgeSeperation );
s = rotationB.v[2];
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact += s * ( centerSeperation * eA / edgeSeperation ); // enough point of contact data gathered for approximative result.
s = Float4( Float3::standard_unit_x.Cross(rotationB.v[0].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_x.Cross(rotationB.v[1].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_x.Cross(rotationB.v[2].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_y.Cross(rotationB.v[0].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_y.Cross(rotationB.v[1].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_y.Cross(rotationB.v[2].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_z.Cross(rotationB.v[0].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_z.Cross(rotationB.v[1].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
s = Float4( Float3::standard_unit_z.Cross(rotationB.v[2].xyz), 0.0f );
centerSeperation = t.Dot(s);
eA = hA.Dot( Abs(s) );
edgeSeperation = eA + hB.Dot( Abs(s * rotationB) );
if( Abs(centerSeperation) > edgeSeperation )
{ // no intersection
return false;
}
localPointOfContact *= 0.5f;
return true;
}
}
// PUBLIC BODY //////////////////////////////////////////////////////
void Compare( Float &connectDistance, Float &connectOffsetSquared, const Ray &ray, const Point &point )
{ // by Dan Andersson
Float4 dP = point.center - ray.origin;
connectDistance = dP.Dot( ray.direction );
connectDistance /= ray.direction.Dot( ray.direction );
dP -= ( connectDistance * ray.direction );
connectOffsetSquared = dP.Dot( dP );
}
void Compare( Float &connectDistanceA, Float &connectDistanceB, Float &connectOffsetSquared, const Ray &rayA, const Ray &rayB )
{ // by Dan Andersson
Float4 dP = rayB.origin - rayA.origin;
connectDistanceA = rayA.direction.Dot( dP );
connectDistanceA /= rayA.direction.Dot( rayA.direction );
dP *= -1.0f;
connectDistanceB = rayB.direction.Dot( dP );
connectDistanceB /= rayB.direction.Dot( rayB.direction );
dP = rayA.direction * connectDistanceA;
dP += rayA.origin;
dP -= rayB.direction * connectDistanceB;
dP -= rayB.origin;
connectOffsetSquared = dP.Dot( dP );
}
void Compare( Float &connectOffset, const Plane &plane, const Point &point )
{ // by Dan Andersson
Private::Compare( connectOffset, plane, point.center );
}
bool Intersect( const Point &pointA, const Point &pointB )
{ // by Fredrick Johansson
if (pointA.center.x != pointB.center.x) return false;
if (pointA.center.y != pointB.center.y) return false;
if (pointA.center.z != pointB.center.z) return false;
return true; // Passed all tests, is in same position
}
bool Intersect( const Point &pointA, const Point &pointB, ::Oyster::Math::Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Ray &ray, const Point &point, Float &connectDistance )
{ // by Dan Andersson
Float connectOffsetSquared;
Compare( connectDistance, connectOffsetSquared, ray, point );
if( Private::EqualsZero(connectOffsetSquared) )
{
connectOffsetSquared = 0.0f;
return true;
}
connectDistance = 0.0f;
return false;
}
bool Intersect( const Ray &ray, const Point &point, ::Oyster::Math::Float &connectDistance, ::Oyster::Math::Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Ray &rayA, const Ray &rayB, Float &connectDistanceA, Float &connectDistanceB )
{ // by Dan Andersson
Float connectOffsetSquared;
Compare( connectDistanceA, connectDistanceB, connectOffsetSquared, rayA, rayB );
if( Private::EqualsZero(connectOffsetSquared) )
{
connectOffsetSquared = 0.0f;
return true;
}
connectDistanceA = connectDistanceB = 0.0f;
return false;
}
bool Intersect( const Ray &rayA, const Ray &rayB, ::Oyster::Math::Float &connectDistanceA, ::Oyster::Math::Float &connectDistanceB, ::Oyster::Math::Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Sphere &sphere, const Point &point )
{ // by Dan Andersson
Float3 dP = point.center - sphere.center;
if( dP.Dot(dP) > (sphere.radius * sphere.radius) )
return false;
return true;
}
bool Intersect( const Sphere &sphere, const Point &point, ::Oyster::Math::Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Sphere &sphere, const Ray &ray, Float &connectDistance )
{// by Dan Andersson
Float4 dP = sphere.center - ray.origin;
Float s = dP.Dot( ray.direction ),
dSquared = dP.Dot( dP ),
rSquared = sphere.radius * sphere.radius;
if( dSquared <= rSquared ) { connectDistance = 0.0f; return true; }
else if( s < 0.0f ) { connectDistance = 0.0f; return false; }
Float mSquared = dSquared - (s*s);
if( mSquared > rSquared ) { connectDistance = 0.0f; return false; }
Float q = ::std::sqrt( rSquared - mSquared );
if( dSquared > rSquared ) connectDistance = s - q;
else connectDistance = s + q;
return true;
}
bool Intersect( const Sphere &sphere, const Ray &ray, ::Oyster::Math::Float &connectDistance, ::Oyster::Math::Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Sphere &sphereA, const Sphere &sphereB )
{ // by Fredrick Johansson
Float4 C = sphereA.center;
C -= sphereB.center;
Float r = (sphereA.radius + sphereB.radius);
if (r*r >= C.Dot(C))
{
return true; // Intersect detected!
}
return false;
}
bool Intersect( const Sphere &sphereA, const Sphere &sphereB, ::Oyster::Math::Float4 &worldPointOfContact )
{ // by Robin Engman
Float4 C = sphereA.center;
C -= sphereB.center;
Float r = sphereA.radius + sphereB.radius;
if ( r*r >= C.Dot(C) )
{
Float distance;
Ray ray(sphereB.center, C.Normalize());
Intersect( sphereA, ray, distance );
worldPointOfContact = ray.origin + ray.direction*distance;
return true;
}
return false;
}
bool Intersect( const Plane &plane, const Point &point )
{ // by Dan Andersson
Float connectOffset;
Private::Compare( connectOffset, plane, point.center );
return Private::EqualsZero(connectOffset);
}
bool Intersect( const Plane &plane, const Point &point, Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Plane &plane, const Ray &ray, Float &connectDistance )
{ // by Dan Andersson
Float c = plane.normal.Dot(ray.direction);
if( Private::EqualsZero(c) )
{ // ray is parallell with the plane. (ray direction orthogonal with the planar normal)
connectDistance = 0.0f;
return Contains( plane, ray.origin );
}
connectDistance = -plane.phasing;
connectDistance -= plane.normal.Dot( ray.origin );
connectDistance /= c;
if( connectDistance > 0.0f )
return true;
connectDistance = 0.0f;
return false;
}
bool Intersect( const Plane &plane, const Ray &ray, Float &connectDistance, Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Plane &plane, const Sphere &sphere )
{ // by Dan Andersson
Float connectOffset;
Private::Compare( connectOffset, plane, sphere.center );
return (connectOffset <= sphere.radius);
}
bool Intersect( const Plane &plane, const Sphere &sphere, Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const Plane &planeA, const Plane &planeB )
{ // by Dan Andersson
if( planeA.normal == planeB.normal ) // they are parallell
return (planeA.phasing == planeB.phasing);
else if( planeA.normal == -planeB.normal ) // they are still parallell
return (planeA.phasing == -planeB.phasing);
return true; // none parallell planes ALWAYS intersects somewhere
}
bool Intersect( const Plane &planeA, const Plane &planeB, Float4 &worldPointOfContact )
{
//! @todo TODO: implement Stub
return false;
}
bool Intersect( const BoxAxisAligned &box, const Point &point )
{ // by Dan Andersson
if( point.center.x < box.minVertex.x ) return false;
if( point.center.x > box.maxVertex.x ) return false;
if( point.center.y < box.minVertex.y ) return false;
if( point.center.y > box.maxVertex.y ) return false;
if( point.center.z < box.minVertex.z ) return false;
if( point.center.z > box.maxVertex.z ) return false;
return true;
}
bool Intersect( const BoxAxisAligned &box, const Point &point, Float4 &worldPointOfContact )
{ // by Dan Andersson
if( Intersect(box, point) )
{
worldPointOfContact = point.center;
return true;
}
return false;
}
bool Intersect( const BoxAxisAligned &box, const Ray &ray, Float &connectDistance )
{ // by Dan Andersson
Float tMin = ::std::numeric_limits<Float>::max(),
tMax = -tMin; // initiating to extremevalues
Float4 boundingOffset = ((box.maxVertex - box.minVertex) * 0.5f),
dP = ((box.maxVertex + box.minVertex) * 0.5f) - ray.origin;
if( Private::BoxVsRayPerSlabCheck( Float4::standard_unit_x, boundingOffset.x, dP, ray.direction, tMin, tMax ) ) { connectDistance = 0.0f; return false; }
if( Private::BoxVsRayPerSlabCheck( Float4::standard_unit_y, boundingOffset.y, dP, ray.direction, tMin, tMax ) ) { connectDistance = 0.0f; return false; }
if( Private::BoxVsRayPerSlabCheck( Float4::standard_unit_z, boundingOffset.z, dP, ray.direction, tMin, tMax ) ) { connectDistance = 0.0f; return false; }
if( tMin > 0.0f ) connectDistance = tMin;
else connectDistance = tMax;
return true;
}
bool Intersect( const BoxAxisAligned &box, const Ray &ray, Float &connectDistance, Float4 &worldPointOfContact )
{ // by Dan Andersson
if( Intersect(box, ray, connectDistance) )
{
worldPointOfContact = ray.origin + ray.direction * connectDistance;
return true;
}
return false;
}
bool Intersect( const BoxAxisAligned &box, const Sphere &sphere )
{ // by Dan Andersson
Float4 e = Max( box.minVertex - sphere.center, Float4::null );
e += Max( sphere.center - box.maxVertex, Float4::null );
if( e.Dot(e) > (sphere.radius * sphere.radius) ) return false;
return true;
}
bool Intersect( const BoxAxisAligned &box, const Sphere &sphere, Float4 &worldPointOfContact )
{ // by Robin Engman
if( Intersect(box, sphere) )
{
Float distance;
Float4 boxMiddle = (box.maxVertex - box.minVertex) * 0.5f;
Ray ray( boxMiddle, (sphere.center - boxMiddle).Normalize() );
Intersect( sphere, ray, distance );
worldPointOfContact = ray.origin + ray.direction * distance;
return true;
}
return false;
}
bool Intersect( const BoxAxisAligned &box, const Plane &plane )
{ // by Dan Andersson
Float e, d;
Private::Compare( e, d, plane, box );
if( d - e > 0.0f ) return false; // is beneath
if( d + e < 0.0f ) return false; // is above
return true;
}
bool Intersect( const BoxAxisAligned &box, const Plane &plane, Float4 &worldPointOfContact )
{
//! @todo TODO: implement stub
return Intersect( box, plane );
}
// bool Intersect( const BoxAxisAligned &box, const Triangle &triangle )
// { return false; /* TODO: */ }
bool Intersect( const BoxAxisAligned &boxA, const BoxAxisAligned &boxB )
{ // by Dan Andersson
if( boxA.maxVertex.x < boxB.minVertex.x ) return false;
if( boxA.minVertex.x > boxB.maxVertex.x ) return false;
if( boxA.maxVertex.y < boxB.minVertex.y ) return false;
if( boxA.minVertex.y > boxB.maxVertex.y ) return false;
if( boxA.maxVertex.z < boxB.minVertex.z ) return false;
if( boxA.minVertex.z > boxB.maxVertex.z ) return false;
return true;
}
bool Intersect( const Box &box, const Point &point )
{ // by Dan Andersson
Float4 dPos = point.center - box.center;
Float coordinate = dPos.Dot( box.xAxis );
if( coordinate > box.boundingOffset.x ) return false;
if( coordinate < -box.boundingOffset.x ) return false;
coordinate = dPos.Dot( box.yAxis );
if( coordinate > box.boundingOffset.y ) return false;
if( coordinate < -box.boundingOffset.y ) return false;
coordinate = dPos.Dot( box.zAxis );
if( coordinate > box.boundingOffset.z ) return false;
if( coordinate < -box.boundingOffset.z ) return false;
return true;
}
bool Intersect( const Box &box, const Point &point, Float4 &worldPointOfContact )
{ // by Dan Andersson
if( Intersect(box, point) )
{
worldPointOfContact = point.center;
return true;
}
return false;
}
bool Intersect( const Box &box, const Ray &ray, Float &connectDistance )
{ // by Dan Andersson
Float tMin = ::std::numeric_limits<Float>::max(),
tMax = -tMin; // initiating to extremevalues
Float4 dP = box.center - ray.origin;
if( Private::BoxVsRayPerSlabCheck( box.xAxis, box.boundingOffset.x, dP, ray.direction, tMin, tMax ) ) { connectDistance = 0.0f; return false; }
if( Private::BoxVsRayPerSlabCheck( box.yAxis, box.boundingOffset.y, dP, ray.direction, tMin, tMax ) ) { connectDistance = 0.0f; return false; }
if( Private::BoxVsRayPerSlabCheck( box.zAxis, box.boundingOffset.z, dP, ray.direction, tMin, tMax ) ) { connectDistance = 0.0f; return false; }
if( tMin > 0.0f ) connectDistance = tMin;
else connectDistance = tMax;
return true;
}
bool Intersect( const Box &box, const Ray &ray, Float &connectDistance, Float4 &worldPointOfContact )
{ // by Dan Andersson
if( Intersect(box, ray, connectDistance) )
{
worldPointOfContact = ray.origin + ray.direction * connectDistance;
return true;
}
return false;
}
bool Intersect( const Box &box, const Sphere &sphere )
{ // by Dan Andersson
// center: sphere's center in the box's view space
Float4 center = TransformVector( InverseRotationMatrix(box.rotation), sphere.center - box.center );
Float4 e = Max( -box.boundingOffset - center, Float4::null );
e += Max( center - box.boundingOffset, Float4::null );
if( e.Dot(e) > (sphere.radius * sphere.radius) ) return false;
return true;
}
bool Intersect( const Box &box, const Sphere &sphere, Float4 &worldPointOfContact )
{ // by Robin Engman
if( Intersect(box, sphere) )
{
Float distance;
Ray ray( box.center, (sphere.center - box.center).Normalize() );
Intersect( sphere, ray, distance );
worldPointOfContact = ray.origin + ray.direction*distance;
return true;
}
return false;
}
bool Intersect( const Box &box, const Plane &plane )
{// by Dan Andersson
Float e, d;
Private::Compare( e, d, plane, box );
if( d - e > 0.0f ) return false; // is beneath
if( d + e < 0.0f ) return false; // is above
return true;
}
bool Intersect( const Box &box, const Plane &plane, Float4 &worldPointOfContact )
{
//! @todo TODO: implement stub
return Intersect( box, plane );
}
bool Intersect( const Box &boxA, const BoxAxisAligned &boxB )
{ // by Dan Andersson
Float4 alignedOffsetBoundaries = (boxB.maxVertex - boxB.minVertex) * 0.5f,
offset = boxA.center- Average( boxB.maxVertex, boxB.minVertex );
return Private::SeperatingAxisTest_AxisAlignedVsTransformedBox( alignedOffsetBoundaries, boxA.boundingOffset, boxA.rotation, offset );
}
bool Intersect( const Box &boxA, const BoxAxisAligned &boxB, ::Oyster::Math::Float4 &worldPointOfContact )
{ // by Dan Andersson
Float4 alignedOffsetBoundaries = (boxB.maxVertex - boxB.minVertex) * 0.5f,
offset = boxA.center - Average( boxB.maxVertex, boxB.minVertex );
Float4 localPointOfContact;
if( Private::SeperatingAxisTest_AxisAlignedVsTransformedBox( alignedOffsetBoundaries, boxA.boundingOffset, boxA.rotation, offset, localPointOfContact ) )
{
worldPointOfContact = localPointOfContact + boxA.center;
worldPointOfContact.w = 1.0f;
return true;
}
else return false;
}
bool Intersect( const Box &boxA, const Box &boxB )
{ // by Dan Andersson
Float4x4 rotationB = TransformMatrix( InverseRotationMatrix(boxA.rotation), boxB.rotation );
Float4 posB = boxB.center - boxA.center;
return Private::SeperatingAxisTest_AxisAlignedVsTransformedBox( boxA.boundingOffset, boxB.boundingOffset, rotationB, posB );
}
bool Intersect( const Box &boxA, const Box &boxB, Float4 &worldPointOfContact )
{
Float4x4 rotationB = TransformMatrix( InverseRotationMatrix(boxA.rotation), boxB.rotation );
Float4 posB = boxB.center - boxA.center;
Float4 localPointOfContact;
if( Private::SeperatingAxisTest_AxisAlignedVsTransformedBox( boxA.boundingOffset, boxB.boundingOffset, rotationB, posB, localPointOfContact ) )
{
worldPointOfContact = TransformVector( boxA.rotation, localPointOfContact, localPointOfContact );
worldPointOfContact += boxA.center;
worldPointOfContact.w = 1.0f;
return true;
}
else return false;
}
bool Intersect( const Frustrum &frustrum, const Point &point )
{ // by Dan Andersson
Float connectOffset;
Private::Compare( connectOffset, frustrum.leftPlane, point.center );
if( connectOffset < 0.0f ) return false;
Private::Compare( connectOffset, frustrum.rightPlane, point.center );
if( connectOffset < 0.0f ) return false;
Private::Compare( connectOffset, frustrum.bottomPlane, point.center );
if( connectOffset < 0.0f) return false;
Private::Compare( connectOffset, frustrum.topPlane, point.center );
if( connectOffset < 0.0f) return false;
Private::Compare( connectOffset, frustrum.nearPlane, point.center );
if( connectOffset < 0.0f ) return false;
Private::Compare( connectOffset, frustrum.farPlane, point.center );
if( connectOffset < 0.0f ) return false;
return true;
}
bool Intersect( const Frustrum &frustrum, const Ray &ray, Float &connectDistance )
{ // by Dan Andersson
bool intersected = false;
Float distance = 0.0f;
connectDistance = ::std::numeric_limits<Float>::max();
if( Intersect(frustrum.leftPlane, ray, distance) )
{
intersected = true;
connectDistance = Min( connectDistance, distance );
}
if( Intersect(frustrum.rightPlane, ray, distance) )
{
intersected = true;
connectDistance = Min( connectDistance, distance );
}
if( Intersect(frustrum.bottomPlane, ray, distance) )
{
intersected = true;
connectDistance = Min( connectDistance, distance );
}
if( Intersect(frustrum.topPlane, ray, distance) )
{
intersected = true;
connectDistance = Min( connectDistance, distance );
}
if( Intersect(frustrum.nearPlane, ray, distance) )
{
intersected = true;
connectDistance = Min( connectDistance, distance );
}
if( Intersect(frustrum.farPlane, ray, distance) )
{
intersected = true;
connectDistance = Min( connectDistance, distance );
}
if( intersected ) return true;
connectDistance = 0.0f;
return false;
}
bool Intersect( const Frustrum &frustrum, const Sphere &sphere )
{ // by Dan Andersson
Float connectOffset;
Private::Compare( connectOffset, frustrum.leftPlane, sphere.center );
if( connectOffset < -sphere.radius ) return false;
Private::Compare( connectOffset, frustrum.rightPlane, sphere.center );
if( connectOffset < -sphere.radius ) return false;
Private::Compare( connectOffset, frustrum.bottomPlane, sphere.center );
if( connectOffset < -sphere.radius ) return false;
Private::Compare( connectOffset, frustrum.topPlane, sphere.center );
if( connectOffset < -sphere.radius ) return false;
Private::Compare( connectOffset, frustrum.nearPlane, sphere.center );
if( connectOffset < -sphere.radius ) return false;
Private::Compare( connectOffset, frustrum.farPlane, sphere.center );
if( connectOffset < -sphere.radius ) return false;
return true;
}
bool Intersect( const Frustrum &frustrum, const Plane &plane )
{
return false; // TODO:
}
// bool Intersect( const Frustrum &frustrum, const Triangle &triangle, ? );
bool Intersect( const Frustrum &frustrum, const BoxAxisAligned &box )
{ // by Dan Andersson
Float e, d;
Private::Compare( e, d, frustrum.leftPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.rightPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.bottomPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.topPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.nearPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.farPlane, box );
if( d - e > 0.0f ) return false; // is beneath
return true;
}
bool Intersect( const Frustrum &frustrum, const Box &box )
{ // by Dan Andersson
Float e, d;
Private::Compare( e, d, frustrum.leftPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.rightPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.bottomPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.topPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.nearPlane, box );
if( d - e > 0.0f ) return false; // is beneath
Private::Compare( e, d, frustrum.farPlane, box );
if( d - e > 0.0f ) return false; // is beneath
return true;
}
bool Intersect( const Frustrum &frustrumA, const Frustrum &frustrumB )
{
return false; // TODO:
}
bool Contains( const Ray &container, const Ray &ray )
{
return false; /*TODO: */
}
bool Contains( const Sphere &sphereA, const Sphere &sphereB )
{ // by Fredrick Johansson
// Check if SphereB is larger than sphereA
if (sphereA.radius < sphereB.radius)
{
return false; // Is impossible, yes
}
// Calc distance from center to center
Float3 d = sphereB.center - sphereA.center;
Float deltaR = sphereA.radius - sphereB.radius;
// Check if contained
if (d.Dot(d) <= (deltaR*deltaR))
{
return true;
}
// Not contained
return false;
}
bool Contains( const Plane &container, const Point &point )
{ // by Dan Andersson
return Private::Contains( container, point.center );
}
bool Contains( const Plane &container, const Ray &ray )
{ // by Dan Andersson
if( Private::NotEqualsZero(container.normal.Dot(ray.direction)) ) return false;
return Contains( container, ray.origin );
}
bool Contains( const Plane &container, const Plane &plane )
{ // by Dan Andersson
if( container.phasing == plane.phasing )
return container.normal == plane.normal;
if( container.phasing == -plane.phasing )
return container.normal == -plane.normal;
return false;
}
Float TimeOfContact( const Sphere &protoStart, const Sphere &protoEnd, const Point &deuter )
{ // Bisection with 5 levels of detail
Float t = 0.5f,
d = 0.25f;
Sphere s;
for( int i = 0; i < 5; ++i )
{
Nlerp( protoStart, protoEnd, t, s );
if( Intersect(s, deuter) )
{
t -= d;
}
else
{
t += d;
}
d *= 0.5f;
}
return t;
}
Float TimeOfContact( const Box &protoStart, const Box &protoEnd, const Point &deuter )
{ // Bisection with 5 levels of detail
Float t = 0.5f,
d = 0.25f;
Box b;
for( int i = 0; i < 5; ++i )
{
Nlerp( protoStart, protoEnd, t, b );
if( Intersect(b, deuter) )
{
t -= d;
}
else
{
t += d;
}
d *= 0.5f;
}
return t;
}
} } }