1353 lines
39 KiB
C++
1353 lines
39 KiB
C++
/*
|
|
Copyright (c) 2003-2006 Gino van den Bergen / Erwin Coumans http://continuousphysics.com/Bullet/
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
|
|
|
|
#ifndef BT_VECTOR3_H
|
|
#define BT_VECTOR3_H
|
|
|
|
//#include <stdint.h>
|
|
#include "btScalar.h"
|
|
#include "btMinMax.h"
|
|
#include "btAlignedAllocator.h"
|
|
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
#define btVector3Data btVector3DoubleData
|
|
#define btVector3DataName "btVector3DoubleData"
|
|
#else
|
|
#define btVector3Data btVector3FloatData
|
|
#define btVector3DataName "btVector3FloatData"
|
|
#endif //BT_USE_DOUBLE_PRECISION
|
|
|
|
#if defined BT_USE_SSE
|
|
|
|
//typedef uint32_t __m128i __attribute__ ((vector_size(16)));
|
|
|
|
#ifdef _MSC_VER
|
|
#pragma warning(disable: 4556) // value of intrinsic immediate argument '4294967239' is out of range '0 - 255'
|
|
#endif
|
|
|
|
|
|
#define BT_SHUFFLE(x,y,z,w) ((w)<<6 | (z)<<4 | (y)<<2 | (x))
|
|
//#define bt_pshufd_ps( _a, _mask ) (__m128) _mm_shuffle_epi32((__m128i)(_a), (_mask) )
|
|
#define bt_pshufd_ps( _a, _mask ) _mm_shuffle_ps((_a), (_a), (_mask) )
|
|
#define bt_splat3_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i, 3) )
|
|
#define bt_splat_ps( _a, _i ) bt_pshufd_ps((_a), BT_SHUFFLE(_i,_i,_i,_i) )
|
|
|
|
#define btv3AbsiMask (_mm_set_epi32(0x00000000, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
|
|
#define btvAbsMask (_mm_set_epi32( 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF))
|
|
#define btvFFF0Mask (_mm_set_epi32(0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF))
|
|
#define btv3AbsfMask btCastiTo128f(btv3AbsiMask)
|
|
#define btvFFF0fMask btCastiTo128f(btvFFF0Mask)
|
|
#define btvxyzMaskf btvFFF0fMask
|
|
#define btvAbsfMask btCastiTo128f(btvAbsMask)
|
|
|
|
//there is an issue with XCode 3.2 (LCx errors)
|
|
#define btvMzeroMask (_mm_set_ps(-0.0f, -0.0f, -0.0f, -0.0f))
|
|
#define v1110 (_mm_set_ps(0.0f, 1.0f, 1.0f, 1.0f))
|
|
#define vHalf (_mm_set_ps(0.5f, 0.5f, 0.5f, 0.5f))
|
|
#define v1_5 (_mm_set_ps(1.5f, 1.5f, 1.5f, 1.5f))
|
|
|
|
//const __m128 ATTRIBUTE_ALIGNED16(btvMzeroMask) = {-0.0f, -0.0f, -0.0f, -0.0f};
|
|
//const __m128 ATTRIBUTE_ALIGNED16(v1110) = {1.0f, 1.0f, 1.0f, 0.0f};
|
|
//const __m128 ATTRIBUTE_ALIGNED16(vHalf) = {0.5f, 0.5f, 0.5f, 0.5f};
|
|
//const __m128 ATTRIBUTE_ALIGNED16(v1_5) = {1.5f, 1.5f, 1.5f, 1.5f};
|
|
|
|
#endif
|
|
|
|
#ifdef BT_USE_NEON
|
|
|
|
const float32x4_t ATTRIBUTE_ALIGNED16(btvMzeroMask) = (float32x4_t){-0.0f, -0.0f, -0.0f, -0.0f};
|
|
const int32x4_t ATTRIBUTE_ALIGNED16(btvFFF0Mask) = (int32x4_t){static_cast<int32_t>(0xFFFFFFFF),
|
|
static_cast<int32_t>(0xFFFFFFFF), static_cast<int32_t>(0xFFFFFFFF), 0x0};
|
|
const int32x4_t ATTRIBUTE_ALIGNED16(btvAbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};
|
|
const int32x4_t ATTRIBUTE_ALIGNED16(btv3AbsMask) = (int32x4_t){0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x0};
|
|
|
|
#endif
|
|
|
|
/**@brief btVector3 can be used to represent 3D points and vectors.
|
|
* It has an un-used w component to suit 16-byte alignment when btVector3 is stored in containers. This extra component can be used by derived classes (Quaternion?) or by user
|
|
* Ideally, this class should be replaced by a platform optimized SIMD version that keeps the data in registers
|
|
*/
|
|
ATTRIBUTE_ALIGNED16(class) btVector3
|
|
{
|
|
public:
|
|
|
|
BT_DECLARE_ALIGNED_ALLOCATOR();
|
|
|
|
#if defined (__SPU__) && defined (__CELLOS_LV2__)
|
|
btScalar m_floats[4];
|
|
public:
|
|
SIMD_FORCE_INLINE const vec_float4& get128() const
|
|
{
|
|
return *((const vec_float4*)&m_floats[0]);
|
|
}
|
|
public:
|
|
#else //__CELLOS_LV2__ __SPU__
|
|
#if defined (BT_USE_SSE) || defined(BT_USE_NEON) // _WIN32 || ARM
|
|
union {
|
|
btSimdFloat4 mVec128;
|
|
btScalar m_floats[4];
|
|
};
|
|
SIMD_FORCE_INLINE btSimdFloat4 get128() const
|
|
{
|
|
return mVec128;
|
|
}
|
|
SIMD_FORCE_INLINE void set128(btSimdFloat4 v128)
|
|
{
|
|
mVec128 = v128;
|
|
}
|
|
#else
|
|
btScalar m_floats[4];
|
|
#endif
|
|
#endif //__CELLOS_LV2__ __SPU__
|
|
|
|
public:
|
|
|
|
/**@brief No initialization constructor */
|
|
SIMD_FORCE_INLINE btVector3()
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
/**@brief Constructor from scalars
|
|
* @param x X value
|
|
* @param y Y value
|
|
* @param z Z value
|
|
*/
|
|
SIMD_FORCE_INLINE btVector3(const btScalar& _x, const btScalar& _y, const btScalar& _z)
|
|
{
|
|
m_floats[0] = _x;
|
|
m_floats[1] = _y;
|
|
m_floats[2] = _z;
|
|
m_floats[3] = btScalar(0.f);
|
|
}
|
|
|
|
#if (defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE) )|| defined (BT_USE_NEON)
|
|
// Set Vector
|
|
SIMD_FORCE_INLINE btVector3( btSimdFloat4 v)
|
|
{
|
|
mVec128 = v;
|
|
}
|
|
|
|
// Copy constructor
|
|
SIMD_FORCE_INLINE btVector3(const btVector3& rhs)
|
|
{
|
|
mVec128 = rhs.mVec128;
|
|
}
|
|
|
|
// Assignment Operator
|
|
SIMD_FORCE_INLINE btVector3&
|
|
operator=(const btVector3& v)
|
|
{
|
|
mVec128 = v.mVec128;
|
|
|
|
return *this;
|
|
}
|
|
#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
|
|
/**@brief Add a vector to this one
|
|
* @param The vector to add to this one */
|
|
SIMD_FORCE_INLINE btVector3& operator+=(const btVector3& v)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
mVec128 = _mm_add_ps(mVec128, v.mVec128);
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vaddq_f32(mVec128, v.mVec128);
|
|
#else
|
|
m_floats[0] += v.m_floats[0];
|
|
m_floats[1] += v.m_floats[1];
|
|
m_floats[2] += v.m_floats[2];
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
|
|
/**@brief Subtract a vector from this one
|
|
* @param The vector to subtract */
|
|
SIMD_FORCE_INLINE btVector3& operator-=(const btVector3& v)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
mVec128 = _mm_sub_ps(mVec128, v.mVec128);
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vsubq_f32(mVec128, v.mVec128);
|
|
#else
|
|
m_floats[0] -= v.m_floats[0];
|
|
m_floats[1] -= v.m_floats[1];
|
|
m_floats[2] -= v.m_floats[2];
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
/**@brief Scale the vector
|
|
* @param s Scale factor */
|
|
SIMD_FORCE_INLINE btVector3& operator*=(const btScalar& s)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
|
|
vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
|
|
mVec128 = _mm_mul_ps(mVec128, vs);
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vmulq_n_f32(mVec128, s);
|
|
#else
|
|
m_floats[0] *= s;
|
|
m_floats[1] *= s;
|
|
m_floats[2] *= s;
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
/**@brief Inversely scale the vector
|
|
* @param s Scale factor to divide by */
|
|
SIMD_FORCE_INLINE btVector3& operator/=(const btScalar& s)
|
|
{
|
|
btFullAssert(s != btScalar(0.0));
|
|
|
|
#if 0 //defined(BT_USE_SSE_IN_API)
|
|
// this code is not faster !
|
|
__m128 vs = _mm_load_ss(&s);
|
|
vs = _mm_div_ss(v1110, vs);
|
|
vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
|
|
|
|
mVec128 = _mm_mul_ps(mVec128, vs);
|
|
|
|
return *this;
|
|
#else
|
|
return *this *= btScalar(1.0) / s;
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the dot product
|
|
* @param v The other vector in the dot product */
|
|
SIMD_FORCE_INLINE btScalar dot(const btVector3& v) const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
__m128 vd = _mm_mul_ps(mVec128, v.mVec128);
|
|
__m128 z = _mm_movehl_ps(vd, vd);
|
|
__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
|
|
vd = _mm_add_ss(vd, y);
|
|
vd = _mm_add_ss(vd, z);
|
|
return _mm_cvtss_f32(vd);
|
|
#elif defined(BT_USE_NEON)
|
|
float32x4_t vd = vmulq_f32(mVec128, v.mVec128);
|
|
float32x2_t x = vpadd_f32(vget_low_f32(vd), vget_low_f32(vd));
|
|
x = vadd_f32(x, vget_high_f32(vd));
|
|
return vget_lane_f32(x, 0);
|
|
#else
|
|
return m_floats[0] * v.m_floats[0] +
|
|
m_floats[1] * v.m_floats[1] +
|
|
m_floats[2] * v.m_floats[2];
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the length of the vector squared */
|
|
SIMD_FORCE_INLINE btScalar length2() const
|
|
{
|
|
return dot(*this);
|
|
}
|
|
|
|
/**@brief Return the length of the vector */
|
|
SIMD_FORCE_INLINE btScalar length() const
|
|
{
|
|
return btSqrt(length2());
|
|
}
|
|
|
|
/**@brief Return the norm (length) of the vector */
|
|
SIMD_FORCE_INLINE btScalar norm() const
|
|
{
|
|
return length();
|
|
}
|
|
|
|
/**@brief Return the distance squared between the ends of this and another vector
|
|
* This is symantically treating the vector like a point */
|
|
SIMD_FORCE_INLINE btScalar distance2(const btVector3& v) const;
|
|
|
|
/**@brief Return the distance between the ends of this and another vector
|
|
* This is symantically treating the vector like a point */
|
|
SIMD_FORCE_INLINE btScalar distance(const btVector3& v) const;
|
|
|
|
SIMD_FORCE_INLINE btVector3& safeNormalize()
|
|
{
|
|
btVector3 absVec = this->absolute();
|
|
int maxIndex = absVec.maxAxis();
|
|
if (absVec[maxIndex]>0)
|
|
{
|
|
*this /= absVec[maxIndex];
|
|
return *this /= length();
|
|
}
|
|
setValue(1,0,0);
|
|
return *this;
|
|
}
|
|
|
|
/**@brief Normalize this vector
|
|
* x^2 + y^2 + z^2 = 1 */
|
|
SIMD_FORCE_INLINE btVector3& normalize()
|
|
{
|
|
|
|
btAssert(length() != btScalar(0));
|
|
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
// dot product first
|
|
__m128 vd = _mm_mul_ps(mVec128, mVec128);
|
|
__m128 z = _mm_movehl_ps(vd, vd);
|
|
__m128 y = _mm_shuffle_ps(vd, vd, 0x55);
|
|
vd = _mm_add_ss(vd, y);
|
|
vd = _mm_add_ss(vd, z);
|
|
|
|
#if 0
|
|
vd = _mm_sqrt_ss(vd);
|
|
vd = _mm_div_ss(v1110, vd);
|
|
vd = bt_splat_ps(vd, 0x80);
|
|
mVec128 = _mm_mul_ps(mVec128, vd);
|
|
#else
|
|
|
|
// NR step 1/sqrt(x) - vd is x, y is output
|
|
y = _mm_rsqrt_ss(vd); // estimate
|
|
|
|
// one step NR
|
|
z = v1_5;
|
|
vd = _mm_mul_ss(vd, vHalf); // vd * 0.5
|
|
//x2 = vd;
|
|
vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0
|
|
vd = _mm_mul_ss(vd, y); // vd * 0.5 * y0 * y0
|
|
z = _mm_sub_ss(z, vd); // 1.5 - vd * 0.5 * y0 * y0
|
|
|
|
y = _mm_mul_ss(y, z); // y0 * (1.5 - vd * 0.5 * y0 * y0)
|
|
|
|
y = bt_splat_ps(y, 0x80);
|
|
mVec128 = _mm_mul_ps(mVec128, y);
|
|
|
|
#endif
|
|
|
|
|
|
return *this;
|
|
#else
|
|
return *this /= length();
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return a normalized version of this vector */
|
|
SIMD_FORCE_INLINE btVector3 normalized() const;
|
|
|
|
/**@brief Return a rotated version of this vector
|
|
* @param wAxis The axis to rotate about
|
|
* @param angle The angle to rotate by */
|
|
SIMD_FORCE_INLINE btVector3 rotate( const btVector3& wAxis, const btScalar angle ) const;
|
|
|
|
/**@brief Return the angle between this and another vector
|
|
* @param v The other vector */
|
|
SIMD_FORCE_INLINE btScalar angle(const btVector3& v) const
|
|
{
|
|
btScalar s = btSqrt(length2() * v.length2());
|
|
btFullAssert(s != btScalar(0.0));
|
|
return btAcos(dot(v) / s);
|
|
}
|
|
|
|
/**@brief Return a vector will the absolute values of each element */
|
|
SIMD_FORCE_INLINE btVector3 absolute() const
|
|
{
|
|
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
return btVector3(_mm_and_ps(mVec128, btv3AbsfMask));
|
|
#elif defined(BT_USE_NEON)
|
|
return btVector3(vabsq_f32(mVec128));
|
|
#else
|
|
return btVector3(
|
|
btFabs(m_floats[0]),
|
|
btFabs(m_floats[1]),
|
|
btFabs(m_floats[2]));
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the cross product between this and another vector
|
|
* @param v The other vector */
|
|
SIMD_FORCE_INLINE btVector3 cross(const btVector3& v) const
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
__m128 T, V;
|
|
|
|
T = bt_pshufd_ps(mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
|
|
V = bt_pshufd_ps(v.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
|
|
|
|
V = _mm_mul_ps(V, mVec128);
|
|
T = _mm_mul_ps(T, v.mVec128);
|
|
V = _mm_sub_ps(V, T);
|
|
|
|
V = bt_pshufd_ps(V, BT_SHUFFLE(1, 2, 0, 3));
|
|
return btVector3(V);
|
|
#elif defined(BT_USE_NEON)
|
|
float32x4_t T, V;
|
|
// form (Y, Z, X, _) of mVec128 and v.mVec128
|
|
float32x2_t Tlow = vget_low_f32(mVec128);
|
|
float32x2_t Vlow = vget_low_f32(v.mVec128);
|
|
T = vcombine_f32(vext_f32(Tlow, vget_high_f32(mVec128), 1), Tlow);
|
|
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v.mVec128), 1), Vlow);
|
|
|
|
V = vmulq_f32(V, mVec128);
|
|
T = vmulq_f32(T, v.mVec128);
|
|
V = vsubq_f32(V, T);
|
|
Vlow = vget_low_f32(V);
|
|
// form (Y, Z, X, _);
|
|
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
|
|
V = (float32x4_t)vandq_s32((int32x4_t)V, btvFFF0Mask);
|
|
|
|
return btVector3(V);
|
|
#else
|
|
return btVector3(
|
|
m_floats[1] * v.m_floats[2] - m_floats[2] * v.m_floats[1],
|
|
m_floats[2] * v.m_floats[0] - m_floats[0] * v.m_floats[2],
|
|
m_floats[0] * v.m_floats[1] - m_floats[1] * v.m_floats[0]);
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar triple(const btVector3& v1, const btVector3& v2) const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
// cross:
|
|
__m128 T = _mm_shuffle_ps(v1.mVec128, v1.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
|
|
__m128 V = _mm_shuffle_ps(v2.mVec128, v2.mVec128, BT_SHUFFLE(1, 2, 0, 3)); // (Y Z X 0)
|
|
|
|
V = _mm_mul_ps(V, v1.mVec128);
|
|
T = _mm_mul_ps(T, v2.mVec128);
|
|
V = _mm_sub_ps(V, T);
|
|
|
|
V = _mm_shuffle_ps(V, V, BT_SHUFFLE(1, 2, 0, 3));
|
|
|
|
// dot:
|
|
V = _mm_mul_ps(V, mVec128);
|
|
__m128 z = _mm_movehl_ps(V, V);
|
|
__m128 y = _mm_shuffle_ps(V, V, 0x55);
|
|
V = _mm_add_ss(V, y);
|
|
V = _mm_add_ss(V, z);
|
|
return _mm_cvtss_f32(V);
|
|
|
|
#elif defined(BT_USE_NEON)
|
|
// cross:
|
|
float32x4_t T, V;
|
|
// form (Y, Z, X, _) of mVec128 and v.mVec128
|
|
float32x2_t Tlow = vget_low_f32(v1.mVec128);
|
|
float32x2_t Vlow = vget_low_f32(v2.mVec128);
|
|
T = vcombine_f32(vext_f32(Tlow, vget_high_f32(v1.mVec128), 1), Tlow);
|
|
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(v2.mVec128), 1), Vlow);
|
|
|
|
V = vmulq_f32(V, v1.mVec128);
|
|
T = vmulq_f32(T, v2.mVec128);
|
|
V = vsubq_f32(V, T);
|
|
Vlow = vget_low_f32(V);
|
|
// form (Y, Z, X, _);
|
|
V = vcombine_f32(vext_f32(Vlow, vget_high_f32(V), 1), Vlow);
|
|
|
|
// dot:
|
|
V = vmulq_f32(mVec128, V);
|
|
float32x2_t x = vpadd_f32(vget_low_f32(V), vget_low_f32(V));
|
|
x = vadd_f32(x, vget_high_f32(V));
|
|
return vget_lane_f32(x, 0);
|
|
#else
|
|
return
|
|
m_floats[0] * (v1.m_floats[1] * v2.m_floats[2] - v1.m_floats[2] * v2.m_floats[1]) +
|
|
m_floats[1] * (v1.m_floats[2] * v2.m_floats[0] - v1.m_floats[0] * v2.m_floats[2]) +
|
|
m_floats[2] * (v1.m_floats[0] * v2.m_floats[1] - v1.m_floats[1] * v2.m_floats[0]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the axis with the smallest value
|
|
* Note return values are 0,1,2 for x, y, or z */
|
|
SIMD_FORCE_INLINE int minAxis() const
|
|
{
|
|
return m_floats[0] < m_floats[1] ? (m_floats[0] <m_floats[2] ? 0 : 2) : (m_floats[1] <m_floats[2] ? 1 : 2);
|
|
}
|
|
|
|
/**@brief Return the axis with the largest value
|
|
* Note return values are 0,1,2 for x, y, or z */
|
|
SIMD_FORCE_INLINE int maxAxis() const
|
|
{
|
|
return m_floats[0] < m_floats[1] ? (m_floats[1] <m_floats[2] ? 2 : 1) : (m_floats[0] <m_floats[2] ? 2 : 0);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int furthestAxis() const
|
|
{
|
|
return absolute().minAxis();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int closestAxis() const
|
|
{
|
|
return absolute().maxAxis();
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE void setInterpolate3(const btVector3& v0, const btVector3& v1, btScalar rt)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
__m128 vrt = _mm_load_ss(&rt); // (rt 0 0 0)
|
|
btScalar s = btScalar(1.0) - rt;
|
|
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
|
|
vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
|
|
__m128 r0 = _mm_mul_ps(v0.mVec128, vs);
|
|
vrt = bt_pshufd_ps(vrt, 0x80); // (rt rt rt 0.0)
|
|
__m128 r1 = _mm_mul_ps(v1.mVec128, vrt);
|
|
__m128 tmp3 = _mm_add_ps(r0,r1);
|
|
mVec128 = tmp3;
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vsubq_f32(v1.mVec128, v0.mVec128);
|
|
mVec128 = vmulq_n_f32(mVec128, rt);
|
|
mVec128 = vaddq_f32(mVec128, v0.mVec128);
|
|
#else
|
|
btScalar s = btScalar(1.0) - rt;
|
|
m_floats[0] = s * v0.m_floats[0] + rt * v1.m_floats[0];
|
|
m_floats[1] = s * v0.m_floats[1] + rt * v1.m_floats[1];
|
|
m_floats[2] = s * v0.m_floats[2] + rt * v1.m_floats[2];
|
|
//don't do the unused w component
|
|
// m_co[3] = s * v0[3] + rt * v1[3];
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the linear interpolation between this and another vector
|
|
* @param v The other vector
|
|
* @param t The ration of this to v (t = 0 => return this, t=1 => return other) */
|
|
SIMD_FORCE_INLINE btVector3 lerp(const btVector3& v, const btScalar& t) const
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
__m128 vt = _mm_load_ss(&t); // (t 0 0 0)
|
|
vt = bt_pshufd_ps(vt, 0x80); // (rt rt rt 0.0)
|
|
__m128 vl = _mm_sub_ps(v.mVec128, mVec128);
|
|
vl = _mm_mul_ps(vl, vt);
|
|
vl = _mm_add_ps(vl, mVec128);
|
|
|
|
return btVector3(vl);
|
|
#elif defined(BT_USE_NEON)
|
|
float32x4_t vl = vsubq_f32(v.mVec128, mVec128);
|
|
vl = vmulq_n_f32(vl, t);
|
|
vl = vaddq_f32(vl, mVec128);
|
|
|
|
return btVector3(vl);
|
|
#else
|
|
return
|
|
btVector3( m_floats[0] + (v.m_floats[0] - m_floats[0]) * t,
|
|
m_floats[1] + (v.m_floats[1] - m_floats[1]) * t,
|
|
m_floats[2] + (v.m_floats[2] - m_floats[2]) * t);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Elementwise multiply this vector by the other
|
|
* @param v The other vector */
|
|
SIMD_FORCE_INLINE btVector3& operator*=(const btVector3& v)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
mVec128 = _mm_mul_ps(mVec128, v.mVec128);
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vmulq_f32(mVec128, v.mVec128);
|
|
#else
|
|
m_floats[0] *= v.m_floats[0];
|
|
m_floats[1] *= v.m_floats[1];
|
|
m_floats[2] *= v.m_floats[2];
|
|
#endif
|
|
return *this;
|
|
}
|
|
|
|
/**@brief Return the x value */
|
|
SIMD_FORCE_INLINE const btScalar& getX() const { return m_floats[0]; }
|
|
/**@brief Return the y value */
|
|
SIMD_FORCE_INLINE const btScalar& getY() const { return m_floats[1]; }
|
|
/**@brief Return the z value */
|
|
SIMD_FORCE_INLINE const btScalar& getZ() const { return m_floats[2]; }
|
|
/**@brief Set the x value */
|
|
SIMD_FORCE_INLINE void setX(btScalar _x) { m_floats[0] = _x;};
|
|
/**@brief Set the y value */
|
|
SIMD_FORCE_INLINE void setY(btScalar _y) { m_floats[1] = _y;};
|
|
/**@brief Set the z value */
|
|
SIMD_FORCE_INLINE void setZ(btScalar _z) { m_floats[2] = _z;};
|
|
/**@brief Set the w value */
|
|
SIMD_FORCE_INLINE void setW(btScalar _w) { m_floats[3] = _w;};
|
|
/**@brief Return the x value */
|
|
SIMD_FORCE_INLINE const btScalar& x() const { return m_floats[0]; }
|
|
/**@brief Return the y value */
|
|
SIMD_FORCE_INLINE const btScalar& y() const { return m_floats[1]; }
|
|
/**@brief Return the z value */
|
|
SIMD_FORCE_INLINE const btScalar& z() const { return m_floats[2]; }
|
|
/**@brief Return the w value */
|
|
SIMD_FORCE_INLINE const btScalar& w() const { return m_floats[3]; }
|
|
|
|
//SIMD_FORCE_INLINE btScalar& operator[](int i) { return (&m_floats[0])[i]; }
|
|
//SIMD_FORCE_INLINE const btScalar& operator[](int i) const { return (&m_floats[0])[i]; }
|
|
///operator btScalar*() replaces operator[], using implicit conversion. We added operator != and operator == to avoid pointer comparisons.
|
|
SIMD_FORCE_INLINE operator btScalar *() { return &m_floats[0]; }
|
|
SIMD_FORCE_INLINE operator const btScalar *() const { return &m_floats[0]; }
|
|
|
|
SIMD_FORCE_INLINE bool operator==(const btVector3& other) const
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
return (0xf == _mm_movemask_ps((__m128)_mm_cmpeq_ps(mVec128, other.mVec128)));
|
|
#else
|
|
return ((m_floats[3]==other.m_floats[3]) &&
|
|
(m_floats[2]==other.m_floats[2]) &&
|
|
(m_floats[1]==other.m_floats[1]) &&
|
|
(m_floats[0]==other.m_floats[0]));
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool operator!=(const btVector3& other) const
|
|
{
|
|
return !(*this == other);
|
|
}
|
|
|
|
/**@brief Set each element to the max of the current values and the values of another btVector3
|
|
* @param other The other btVector3 to compare with
|
|
*/
|
|
SIMD_FORCE_INLINE void setMax(const btVector3& other)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
mVec128 = _mm_max_ps(mVec128, other.mVec128);
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vmaxq_f32(mVec128, other.mVec128);
|
|
#else
|
|
btSetMax(m_floats[0], other.m_floats[0]);
|
|
btSetMax(m_floats[1], other.m_floats[1]);
|
|
btSetMax(m_floats[2], other.m_floats[2]);
|
|
btSetMax(m_floats[3], other.w());
|
|
#endif
|
|
}
|
|
|
|
/**@brief Set each element to the min of the current values and the values of another btVector3
|
|
* @param other The other btVector3 to compare with
|
|
*/
|
|
SIMD_FORCE_INLINE void setMin(const btVector3& other)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
mVec128 = _mm_min_ps(mVec128, other.mVec128);
|
|
#elif defined(BT_USE_NEON)
|
|
mVec128 = vminq_f32(mVec128, other.mVec128);
|
|
#else
|
|
btSetMin(m_floats[0], other.m_floats[0]);
|
|
btSetMin(m_floats[1], other.m_floats[1]);
|
|
btSetMin(m_floats[2], other.m_floats[2]);
|
|
btSetMin(m_floats[3], other.w());
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z)
|
|
{
|
|
m_floats[0]=_x;
|
|
m_floats[1]=_y;
|
|
m_floats[2]=_z;
|
|
m_floats[3] = btScalar(0.f);
|
|
}
|
|
|
|
void getSkewSymmetricMatrix(btVector3* v0,btVector3* v1,btVector3* v2) const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
|
|
__m128 V = _mm_and_ps(mVec128, btvFFF0fMask);
|
|
__m128 V0 = _mm_xor_ps(btvMzeroMask, V);
|
|
__m128 V2 = _mm_movelh_ps(V0, V);
|
|
|
|
__m128 V1 = _mm_shuffle_ps(V, V0, 0xCE);
|
|
|
|
V0 = _mm_shuffle_ps(V0, V, 0xDB);
|
|
V2 = _mm_shuffle_ps(V2, V, 0xF9);
|
|
|
|
v0->mVec128 = V0;
|
|
v1->mVec128 = V1;
|
|
v2->mVec128 = V2;
|
|
#else
|
|
v0->setValue(0. ,-z() ,y());
|
|
v1->setValue(z() ,0. ,-x());
|
|
v2->setValue(-y() ,x() ,0.);
|
|
#endif
|
|
}
|
|
|
|
void setZero()
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
mVec128 = (__m128)_mm_xor_ps(mVec128, mVec128);
|
|
#elif defined(BT_USE_NEON)
|
|
int32x4_t vi = vdupq_n_s32(0);
|
|
mVec128 = vreinterpretq_f32_s32(vi);
|
|
#else
|
|
setValue(btScalar(0.),btScalar(0.),btScalar(0.));
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool isZero() const
|
|
{
|
|
return m_floats[0] == btScalar(0) && m_floats[1] == btScalar(0) && m_floats[2] == btScalar(0);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool fuzzyZero() const
|
|
{
|
|
return length2() < SIMD_EPSILON;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void serialize(struct btVector3Data& dataOut) const;
|
|
|
|
SIMD_FORCE_INLINE void deSerialize(const struct btVector3Data& dataIn);
|
|
|
|
SIMD_FORCE_INLINE void serializeFloat(struct btVector3FloatData& dataOut) const;
|
|
|
|
SIMD_FORCE_INLINE void deSerializeFloat(const struct btVector3FloatData& dataIn);
|
|
|
|
SIMD_FORCE_INLINE void serializeDouble(struct btVector3DoubleData& dataOut) const;
|
|
|
|
SIMD_FORCE_INLINE void deSerializeDouble(const struct btVector3DoubleData& dataIn);
|
|
|
|
/**@brief returns index of maximum dot product between this and vectors in array[]
|
|
* @param array The other vectors
|
|
* @param array_count The number of other vectors
|
|
* @param dotOut The maximum dot product */
|
|
SIMD_FORCE_INLINE long maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const;
|
|
|
|
/**@brief returns index of minimum dot product between this and vectors in array[]
|
|
* @param array The other vectors
|
|
* @param array_count The number of other vectors
|
|
* @param dotOut The minimum dot product */
|
|
SIMD_FORCE_INLINE long minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const;
|
|
|
|
/* create a vector as btVector3( this->dot( btVector3 v0 ), this->dot( btVector3 v1), this->dot( btVector3 v2 )) */
|
|
SIMD_FORCE_INLINE btVector3 dot3( const btVector3 &v0, const btVector3 &v1, const btVector3 &v2 ) const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
|
|
__m128 a0 = _mm_mul_ps( v0.mVec128, this->mVec128 );
|
|
__m128 a1 = _mm_mul_ps( v1.mVec128, this->mVec128 );
|
|
__m128 a2 = _mm_mul_ps( v2.mVec128, this->mVec128 );
|
|
__m128 b0 = _mm_unpacklo_ps( a0, a1 );
|
|
__m128 b1 = _mm_unpackhi_ps( a0, a1 );
|
|
__m128 b2 = _mm_unpacklo_ps( a2, _mm_setzero_ps() );
|
|
__m128 r = _mm_movelh_ps( b0, b2 );
|
|
r = _mm_add_ps( r, _mm_movehl_ps( b2, b0 ));
|
|
a2 = _mm_and_ps( a2, btvxyzMaskf);
|
|
r = _mm_add_ps( r, btCastdTo128f (_mm_move_sd( btCastfTo128d(a2), btCastfTo128d(b1) )));
|
|
return btVector3(r);
|
|
|
|
#elif defined(BT_USE_NEON)
|
|
static const uint32x4_t xyzMask = (const uint32x4_t){ static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), static_cast<uint32_t>(-1), 0 };
|
|
float32x4_t a0 = vmulq_f32( v0.mVec128, this->mVec128);
|
|
float32x4_t a1 = vmulq_f32( v1.mVec128, this->mVec128);
|
|
float32x4_t a2 = vmulq_f32( v2.mVec128, this->mVec128);
|
|
float32x2x2_t zLo = vtrn_f32( vget_high_f32(a0), vget_high_f32(a1));
|
|
a2 = (float32x4_t) vandq_u32((uint32x4_t) a2, xyzMask );
|
|
float32x2_t b0 = vadd_f32( vpadd_f32( vget_low_f32(a0), vget_low_f32(a1)), zLo.val[0] );
|
|
float32x2_t b1 = vpadd_f32( vpadd_f32( vget_low_f32(a2), vget_high_f32(a2)), vdup_n_f32(0.0f));
|
|
return btVector3( vcombine_f32(b0, b1) );
|
|
#else
|
|
return btVector3( dot(v0), dot(v1), dot(v2));
|
|
#endif
|
|
}
|
|
};
|
|
|
|
/**@brief Return the sum of two vectors (Point symantics)*/
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator+(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
return btVector3(_mm_add_ps(v1.mVec128, v2.mVec128));
|
|
#elif defined(BT_USE_NEON)
|
|
return btVector3(vaddq_f32(v1.mVec128, v2.mVec128));
|
|
#else
|
|
return btVector3(
|
|
v1.m_floats[0] + v2.m_floats[0],
|
|
v1.m_floats[1] + v2.m_floats[1],
|
|
v1.m_floats[2] + v2.m_floats[2]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the elementwise product of two vectors */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
return btVector3(_mm_mul_ps(v1.mVec128, v2.mVec128));
|
|
#elif defined(BT_USE_NEON)
|
|
return btVector3(vmulq_f32(v1.mVec128, v2.mVec128));
|
|
#else
|
|
return btVector3(
|
|
v1.m_floats[0] * v2.m_floats[0],
|
|
v1.m_floats[1] * v2.m_floats[1],
|
|
v1.m_floats[2] * v2.m_floats[2]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the difference between two vectors */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator-(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined(BT_USE_SSE))
|
|
|
|
// without _mm_and_ps this code causes slowdown in Concave moving
|
|
__m128 r = _mm_sub_ps(v1.mVec128, v2.mVec128);
|
|
return btVector3(_mm_and_ps(r, btvFFF0fMask));
|
|
#elif defined(BT_USE_NEON)
|
|
float32x4_t r = vsubq_f32(v1.mVec128, v2.mVec128);
|
|
return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
|
|
#else
|
|
return btVector3(
|
|
v1.m_floats[0] - v2.m_floats[0],
|
|
v1.m_floats[1] - v2.m_floats[1],
|
|
v1.m_floats[2] - v2.m_floats[2]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the negative of the vector */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator-(const btVector3& v)
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE))
|
|
__m128 r = _mm_xor_ps(v.mVec128, btvMzeroMask);
|
|
return btVector3(_mm_and_ps(r, btvFFF0fMask));
|
|
#elif defined(BT_USE_NEON)
|
|
return btVector3((btSimdFloat4)veorq_s32((int32x4_t)v.mVec128, (int32x4_t)btvMzeroMask));
|
|
#else
|
|
return btVector3(-v.m_floats[0], -v.m_floats[1], -v.m_floats[2]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the vector scaled by s */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btVector3& v, const btScalar& s)
|
|
{
|
|
#if defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
__m128 vs = _mm_load_ss(&s); // (S 0 0 0)
|
|
vs = bt_pshufd_ps(vs, 0x80); // (S S S 0.0)
|
|
return btVector3(_mm_mul_ps(v.mVec128, vs));
|
|
#elif defined(BT_USE_NEON)
|
|
float32x4_t r = vmulq_n_f32(v.mVec128, s);
|
|
return btVector3((float32x4_t)vandq_s32((int32x4_t)r, btvFFF0Mask));
|
|
#else
|
|
return btVector3(v.m_floats[0] * s, v.m_floats[1] * s, v.m_floats[2] * s);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the vector scaled by s */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator*(const btScalar& s, const btVector3& v)
|
|
{
|
|
return v * s;
|
|
}
|
|
|
|
/**@brief Return the vector inversely scaled by s */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator/(const btVector3& v, const btScalar& s)
|
|
{
|
|
btFullAssert(s != btScalar(0.0));
|
|
#if 0 //defined(BT_USE_SSE_IN_API)
|
|
// this code is not faster !
|
|
__m128 vs = _mm_load_ss(&s);
|
|
vs = _mm_div_ss(v1110, vs);
|
|
vs = bt_pshufd_ps(vs, 0x00); // (S S S S)
|
|
|
|
return btVector3(_mm_mul_ps(v.mVec128, vs));
|
|
#else
|
|
return v * (btScalar(1.0) / s);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the vector inversely scaled by s */
|
|
SIMD_FORCE_INLINE btVector3
|
|
operator/(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && (defined(BT_USE_SSE_IN_API)&& defined (BT_USE_SSE))
|
|
__m128 vec = _mm_div_ps(v1.mVec128, v2.mVec128);
|
|
vec = _mm_and_ps(vec, btvFFF0fMask);
|
|
return btVector3(vec);
|
|
#elif defined(BT_USE_NEON)
|
|
float32x4_t x, y, v, m;
|
|
|
|
x = v1.mVec128;
|
|
y = v2.mVec128;
|
|
|
|
v = vrecpeq_f32(y); // v ~ 1/y
|
|
m = vrecpsq_f32(y, v); // m = (2-v*y)
|
|
v = vmulq_f32(v, m); // vv = v*m ~~ 1/y
|
|
m = vrecpsq_f32(y, v); // mm = (2-vv*y)
|
|
v = vmulq_f32(v, x); // x*vv
|
|
v = vmulq_f32(v, m); // (x*vv)*(2-vv*y) = x*(vv(2-vv*y)) ~~~ x/y
|
|
|
|
return btVector3(v);
|
|
#else
|
|
return btVector3(
|
|
v1.m_floats[0] / v2.m_floats[0],
|
|
v1.m_floats[1] / v2.m_floats[1],
|
|
v1.m_floats[2] / v2.m_floats[2]);
|
|
#endif
|
|
}
|
|
|
|
/**@brief Return the dot product between two vectors */
|
|
SIMD_FORCE_INLINE btScalar
|
|
btDot(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
return v1.dot(v2);
|
|
}
|
|
|
|
|
|
/**@brief Return the distance squared between two vectors */
|
|
SIMD_FORCE_INLINE btScalar
|
|
btDistance2(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
return v1.distance2(v2);
|
|
}
|
|
|
|
|
|
/**@brief Return the distance between two vectors */
|
|
SIMD_FORCE_INLINE btScalar
|
|
btDistance(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
return v1.distance(v2);
|
|
}
|
|
|
|
/**@brief Return the angle between two vectors */
|
|
SIMD_FORCE_INLINE btScalar
|
|
btAngle(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
return v1.angle(v2);
|
|
}
|
|
|
|
/**@brief Return the cross product of two vectors */
|
|
SIMD_FORCE_INLINE btVector3
|
|
btCross(const btVector3& v1, const btVector3& v2)
|
|
{
|
|
return v1.cross(v2);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar
|
|
btTriple(const btVector3& v1, const btVector3& v2, const btVector3& v3)
|
|
{
|
|
return v1.triple(v2, v3);
|
|
}
|
|
|
|
/**@brief Return the linear interpolation between two vectors
|
|
* @param v1 One vector
|
|
* @param v2 The other vector
|
|
* @param t The ration of this to v (t = 0 => return v1, t=1 => return v2) */
|
|
SIMD_FORCE_INLINE btVector3
|
|
lerp(const btVector3& v1, const btVector3& v2, const btScalar& t)
|
|
{
|
|
return v1.lerp(v2, t);
|
|
}
|
|
|
|
|
|
|
|
SIMD_FORCE_INLINE btScalar btVector3::distance2(const btVector3& v) const
|
|
{
|
|
return (v - *this).length2();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btScalar btVector3::distance(const btVector3& v) const
|
|
{
|
|
return (v - *this).length();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector3 btVector3::normalized() const
|
|
{
|
|
btVector3 norm = *this;
|
|
|
|
return norm.normalize();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector3 btVector3::rotate( const btVector3& wAxis, const btScalar _angle ) const
|
|
{
|
|
// wAxis must be a unit lenght vector
|
|
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined (BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
|
|
__m128 O = _mm_mul_ps(wAxis.mVec128, mVec128);
|
|
btScalar ssin = btSin( _angle );
|
|
__m128 C = wAxis.cross( mVec128 ).mVec128;
|
|
O = _mm_and_ps(O, btvFFF0fMask);
|
|
btScalar scos = btCos( _angle );
|
|
|
|
__m128 vsin = _mm_load_ss(&ssin); // (S 0 0 0)
|
|
__m128 vcos = _mm_load_ss(&scos); // (S 0 0 0)
|
|
|
|
__m128 Y = bt_pshufd_ps(O, 0xC9); // (Y Z X 0)
|
|
__m128 Z = bt_pshufd_ps(O, 0xD2); // (Z X Y 0)
|
|
O = _mm_add_ps(O, Y);
|
|
vsin = bt_pshufd_ps(vsin, 0x80); // (S S S 0)
|
|
O = _mm_add_ps(O, Z);
|
|
vcos = bt_pshufd_ps(vcos, 0x80); // (S S S 0)
|
|
|
|
vsin = vsin * C;
|
|
O = O * wAxis.mVec128;
|
|
__m128 X = mVec128 - O;
|
|
|
|
O = O + vsin;
|
|
vcos = vcos * X;
|
|
O = O + vcos;
|
|
|
|
return btVector3(O);
|
|
#else
|
|
btVector3 o = wAxis * wAxis.dot( *this );
|
|
btVector3 _x = *this - o;
|
|
btVector3 _y;
|
|
|
|
_y = wAxis.cross( *this );
|
|
|
|
return ( o + _x * btCos( _angle ) + _y * btSin( _angle ) );
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE long btVector3::maxDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
|
|
{
|
|
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
#if defined _WIN32 || defined (BT_USE_SSE)
|
|
const long scalar_cutoff = 10;
|
|
long _maxdot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
|
|
#elif defined BT_USE_NEON
|
|
const long scalar_cutoff = 4;
|
|
extern long (*_maxdot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
|
|
#endif
|
|
if( array_count < scalar_cutoff )
|
|
#endif
|
|
{
|
|
btScalar maxDot = -SIMD_INFINITY;
|
|
int i = 0;
|
|
int ptIndex = -1;
|
|
for( i = 0; i < array_count; i++ )
|
|
{
|
|
btScalar dot = array[i].dot(*this);
|
|
|
|
if( dot > maxDot )
|
|
{
|
|
maxDot = dot;
|
|
ptIndex = i;
|
|
}
|
|
}
|
|
|
|
dotOut = maxDot;
|
|
return ptIndex;
|
|
}
|
|
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
return _maxdot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
|
|
#endif
|
|
}
|
|
|
|
SIMD_FORCE_INLINE long btVector3::minDot( const btVector3 *array, long array_count, btScalar &dotOut ) const
|
|
{
|
|
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
#if defined BT_USE_SSE
|
|
const long scalar_cutoff = 10;
|
|
long _mindot_large( const float *array, const float *vec, unsigned long array_count, float *dotOut );
|
|
#elif defined BT_USE_NEON
|
|
const long scalar_cutoff = 4;
|
|
extern long (*_mindot_large)( const float *array, const float *vec, unsigned long array_count, float *dotOut );
|
|
#else
|
|
#error unhandled arch!
|
|
#endif
|
|
|
|
if( array_count < scalar_cutoff )
|
|
#endif
|
|
{
|
|
btScalar minDot = SIMD_INFINITY;
|
|
int i = 0;
|
|
int ptIndex = -1;
|
|
|
|
for( i = 0; i < array_count; i++ )
|
|
{
|
|
btScalar dot = array[i].dot(*this);
|
|
|
|
if( dot < minDot )
|
|
{
|
|
minDot = dot;
|
|
ptIndex = i;
|
|
}
|
|
}
|
|
|
|
dotOut = minDot;
|
|
|
|
return ptIndex;
|
|
}
|
|
#if (defined BT_USE_SSE && defined BT_USE_SIMD_VECTOR3 && defined BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
return _mindot_large( (float*) array, (float*) &m_floats[0], array_count, &dotOut );
|
|
#endif//BT_USE_SIMD_VECTOR3
|
|
}
|
|
|
|
|
|
class btVector4 : public btVector3
|
|
{
|
|
public:
|
|
|
|
SIMD_FORCE_INLINE btVector4() {}
|
|
|
|
|
|
SIMD_FORCE_INLINE btVector4(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
|
|
: btVector3(_x,_y,_z)
|
|
{
|
|
m_floats[3] = _w;
|
|
}
|
|
|
|
#if (defined (BT_USE_SSE_IN_API)&& defined (BT_USE_SSE)) || defined (BT_USE_NEON)
|
|
SIMD_FORCE_INLINE btVector4(const btSimdFloat4 vec)
|
|
{
|
|
mVec128 = vec;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector4(const btVector3& rhs)
|
|
{
|
|
mVec128 = rhs.mVec128;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btVector4&
|
|
operator=(const btVector4& v)
|
|
{
|
|
mVec128 = v.mVec128;
|
|
return *this;
|
|
}
|
|
#endif // #if defined (BT_USE_SSE_IN_API) || defined (BT_USE_NEON)
|
|
|
|
SIMD_FORCE_INLINE btVector4 absolute4() const
|
|
{
|
|
#if defined BT_USE_SIMD_VECTOR3 && defined(BT_USE_SSE_IN_API) && defined (BT_USE_SSE)
|
|
return btVector4(_mm_and_ps(mVec128, btvAbsfMask));
|
|
#elif defined(BT_USE_NEON)
|
|
return btVector4(vabsq_f32(mVec128));
|
|
#else
|
|
return btVector4(
|
|
btFabs(m_floats[0]),
|
|
btFabs(m_floats[1]),
|
|
btFabs(m_floats[2]),
|
|
btFabs(m_floats[3]));
|
|
#endif
|
|
}
|
|
|
|
|
|
btScalar getW() const { return m_floats[3];}
|
|
|
|
|
|
SIMD_FORCE_INLINE int maxAxis4() const
|
|
{
|
|
int maxIndex = -1;
|
|
btScalar maxVal = btScalar(-BT_LARGE_FLOAT);
|
|
if (m_floats[0] > maxVal)
|
|
{
|
|
maxIndex = 0;
|
|
maxVal = m_floats[0];
|
|
}
|
|
if (m_floats[1] > maxVal)
|
|
{
|
|
maxIndex = 1;
|
|
maxVal = m_floats[1];
|
|
}
|
|
if (m_floats[2] > maxVal)
|
|
{
|
|
maxIndex = 2;
|
|
maxVal =m_floats[2];
|
|
}
|
|
if (m_floats[3] > maxVal)
|
|
{
|
|
maxIndex = 3;
|
|
maxVal = m_floats[3];
|
|
}
|
|
|
|
return maxIndex;
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE int minAxis4() const
|
|
{
|
|
int minIndex = -1;
|
|
btScalar minVal = btScalar(BT_LARGE_FLOAT);
|
|
if (m_floats[0] < minVal)
|
|
{
|
|
minIndex = 0;
|
|
minVal = m_floats[0];
|
|
}
|
|
if (m_floats[1] < minVal)
|
|
{
|
|
minIndex = 1;
|
|
minVal = m_floats[1];
|
|
}
|
|
if (m_floats[2] < minVal)
|
|
{
|
|
minIndex = 2;
|
|
minVal =m_floats[2];
|
|
}
|
|
if (m_floats[3] < minVal)
|
|
{
|
|
minIndex = 3;
|
|
minVal = m_floats[3];
|
|
}
|
|
|
|
return minIndex;
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE int closestAxis4() const
|
|
{
|
|
return absolute4().maxAxis4();
|
|
}
|
|
|
|
|
|
|
|
|
|
/**@brief Set x,y,z and zero w
|
|
* @param x Value of x
|
|
* @param y Value of y
|
|
* @param z Value of z
|
|
*/
|
|
|
|
|
|
/* void getValue(btScalar *m) const
|
|
{
|
|
m[0] = m_floats[0];
|
|
m[1] = m_floats[1];
|
|
m[2] =m_floats[2];
|
|
}
|
|
*/
|
|
/**@brief Set the values
|
|
* @param x Value of x
|
|
* @param y Value of y
|
|
* @param z Value of z
|
|
* @param w Value of w
|
|
*/
|
|
SIMD_FORCE_INLINE void setValue(const btScalar& _x, const btScalar& _y, const btScalar& _z,const btScalar& _w)
|
|
{
|
|
m_floats[0]=_x;
|
|
m_floats[1]=_y;
|
|
m_floats[2]=_z;
|
|
m_floats[3]=_w;
|
|
}
|
|
|
|
|
|
};
|
|
|
|
|
|
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
|
|
SIMD_FORCE_INLINE void btSwapScalarEndian(const btScalar& sourceVal, btScalar& destVal)
|
|
{
|
|
#ifdef BT_USE_DOUBLE_PRECISION
|
|
unsigned char* dest = (unsigned char*) &destVal;
|
|
unsigned char* src = (unsigned char*) &sourceVal;
|
|
dest[0] = src[7];
|
|
dest[1] = src[6];
|
|
dest[2] = src[5];
|
|
dest[3] = src[4];
|
|
dest[4] = src[3];
|
|
dest[5] = src[2];
|
|
dest[6] = src[1];
|
|
dest[7] = src[0];
|
|
#else
|
|
unsigned char* dest = (unsigned char*) &destVal;
|
|
unsigned char* src = (unsigned char*) &sourceVal;
|
|
dest[0] = src[3];
|
|
dest[1] = src[2];
|
|
dest[2] = src[1];
|
|
dest[3] = src[0];
|
|
#endif //BT_USE_DOUBLE_PRECISION
|
|
}
|
|
///btSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
|
|
SIMD_FORCE_INLINE void btSwapVector3Endian(const btVector3& sourceVec, btVector3& destVec)
|
|
{
|
|
for (int i=0;i<4;i++)
|
|
{
|
|
btSwapScalarEndian(sourceVec[i],destVec[i]);
|
|
}
|
|
|
|
}
|
|
|
|
///btUnSwapVector3Endian swaps vector endianness, useful for network and cross-platform serialization
|
|
SIMD_FORCE_INLINE void btUnSwapVector3Endian(btVector3& vector)
|
|
{
|
|
|
|
btVector3 swappedVec;
|
|
for (int i=0;i<4;i++)
|
|
{
|
|
btSwapScalarEndian(vector[i],swappedVec[i]);
|
|
}
|
|
vector = swappedVec;
|
|
}
|
|
|
|
template <class T>
|
|
SIMD_FORCE_INLINE void btPlaneSpace1 (const T& n, T& p, T& q)
|
|
{
|
|
if (btFabs(n[2]) > SIMDSQRT12) {
|
|
// choose p in y-z plane
|
|
btScalar a = n[1]*n[1] + n[2]*n[2];
|
|
btScalar k = btRecipSqrt (a);
|
|
p[0] = 0;
|
|
p[1] = -n[2]*k;
|
|
p[2] = n[1]*k;
|
|
// set q = n x p
|
|
q[0] = a*k;
|
|
q[1] = -n[0]*p[2];
|
|
q[2] = n[0]*p[1];
|
|
}
|
|
else {
|
|
// choose p in x-y plane
|
|
btScalar a = n[0]*n[0] + n[1]*n[1];
|
|
btScalar k = btRecipSqrt (a);
|
|
p[0] = -n[1]*k;
|
|
p[1] = n[0]*k;
|
|
p[2] = 0;
|
|
// set q = n x p
|
|
q[0] = -n[2]*p[1];
|
|
q[1] = n[2]*p[0];
|
|
q[2] = a*k;
|
|
}
|
|
}
|
|
|
|
|
|
struct btVector3FloatData
|
|
{
|
|
float m_floats[4];
|
|
};
|
|
|
|
struct btVector3DoubleData
|
|
{
|
|
double m_floats[4];
|
|
|
|
};
|
|
|
|
SIMD_FORCE_INLINE void btVector3::serializeFloat(struct btVector3FloatData& dataOut) const
|
|
{
|
|
///could also do a memcpy, check if it is worth it
|
|
for (int i=0;i<4;i++)
|
|
dataOut.m_floats[i] = float(m_floats[i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btVector3::deSerializeFloat(const struct btVector3FloatData& dataIn)
|
|
{
|
|
for (int i=0;i<4;i++)
|
|
m_floats[i] = btScalar(dataIn.m_floats[i]);
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE void btVector3::serializeDouble(struct btVector3DoubleData& dataOut) const
|
|
{
|
|
///could also do a memcpy, check if it is worth it
|
|
for (int i=0;i<4;i++)
|
|
dataOut.m_floats[i] = double(m_floats[i]);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btVector3::deSerializeDouble(const struct btVector3DoubleData& dataIn)
|
|
{
|
|
for (int i=0;i<4;i++)
|
|
m_floats[i] = btScalar(dataIn.m_floats[i]);
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE void btVector3::serialize(struct btVector3Data& dataOut) const
|
|
{
|
|
///could also do a memcpy, check if it is worth it
|
|
for (int i=0;i<4;i++)
|
|
dataOut.m_floats[i] = m_floats[i];
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void btVector3::deSerialize(const struct btVector3Data& dataIn)
|
|
{
|
|
for (int i=0;i<4;i++)
|
|
m_floats[i] = dataIn.m_floats[i];
|
|
}
|
|
|
|
#endif //BT_VECTOR3_H
|