Danbias/Code/OysterPhysics3D/Sphere.cpp

115 lines
3.7 KiB
C++

#include "Sphere.h"
#include "OysterCollision3D.h"
using namespace ::Oyster::Collision3D;
using namespace ::Oyster::Math;
Sphere::Sphere( ) : ICollideable(Type_sphere)
{
this->center = Float4::standard_unit_w;
this->radius = 0.0f;
}
Sphere::Sphere( const Float3 &p, const Float &r ) : ICollideable(Type_sphere)
{
this->center = Float4( p, 1.0f );
this->radius = r;
}
Sphere::Sphere( const Float4 &p, const Float &r ) : ICollideable(Type_sphere)
{
this->center = p;
this->radius = r;
}
Sphere::~Sphere( ) {}
Sphere & Sphere::operator = ( const Sphere &sphere )
{
this->center = sphere.center;
this->radius = sphere.radius;
return *this;
}
::Utility::DynamicMemory::UniquePointer<ICollideable> Sphere::Clone( ) const
{
return ::Utility::DynamicMemory::UniquePointer<ICollideable>( new Sphere(*this) );
}
bool Sphere::Intersects( const ICollideable &target ) const
{
switch( target.type )
{
case Type_universe: return true;
case Type_point: return Utility::Intersect( *this, (const Point&)target );
case Type_ray: return Utility::Intersect( *this, (const Ray&)target, ((const Ray&)target).collisionDistance );
case Type_sphere: return Utility::Intersect( *this, (const Sphere&)target );
case Type_plane: return Utility::Intersect( (const Plane&)target, *this );
//case Type_triangle: return false; // TODO:
case Type_box_axis_aligned: return Utility::Intersect( (const BoxAxisAligned&)target, *this );
case Type_box: return Utility::Intersect( (const Box&)target, *this );
//case Type_frustrum: return false; // TODO:
default: return false;
}
}
bool Sphere::Intersects( const ICollideable &target, Float4 &worldPointOfContact ) const
{
switch( target.type )
{
case Type_universe:
worldPointOfContact = this->center;
return true;
case Type_point: return Utility::Intersect( *this, (const Point&)target, worldPointOfContact );
case Type_ray: return Utility::Intersect( *this, (const Ray&)target, ((const Ray&)target).collisionDistance, worldPointOfContact );
case Type_sphere: return Utility::Intersect( *this, (const Sphere&)target, worldPointOfContact );
case Type_plane: return Utility::Intersect( (const Plane&)target, *this, worldPointOfContact );
//case Type_triangle: return false; // TODO:
case Type_box_axis_aligned: return Utility::Intersect( (const BoxAxisAligned&)target, *this, worldPointOfContact );
case Type_box: return Utility::Intersect( (const Box&)target, *this, worldPointOfContact );
//case Type_frustrum: return false; // TODO:
default:
worldPointOfContact = Float3::null;
return false;
}
}
bool Sphere::Contains( const ICollideable &target ) const
{
switch( target.type )
{
case Type_point: return Utility::Intersect( *this, (const Point&)target );
case Type_sphere: return Utility::Contains( *this, (const Sphere&)target );
//case Type_triangle: return false; // TODO:
//case Type_box_axis_aligned: return false; // TODO:
//case Type_box: return false; // TODO:
//case Type_frustrum: return false; // TODO:
default: return false;
}
}
Float Sphere::TimeOfContact( const ICollideable &deuterStart, const ICollideable &deuterEnd ) const
{
if( deuterStart.type != deuterEnd.type )
return -1.0f;
switch( deuterStart.type )
{
//case Type_point: // not implemented
//case Type_sphere: // not implemented
//case Type_box: // not implemented
case Type_universe: return 0.0f;
default: return 1.0f;
}
}
namespace Oyster { namespace Math
{
Sphere & Nlerp( const Sphere &start, const Sphere &end, Float t, Sphere &targetMem )
{
Float4 i = Lerp( Float4(start.center.xyz, start.radius), Float4(end.center.xyz, end.radius), t );
targetMem.center.xyz = i.xyz;
targetMem.radius = i.w;
return targetMem;
}
} }