Danbias/Code/OysterGraphics/Render/Rendering/BasicRender.cpp

198 lines
6.3 KiB
C++

#include "Render.h"
#include "../Resources/Deffered.h"
#include "../../Definitions/GraphicalDefinition.h"
#include "../../Model/ModelInfo.h"
#include "../../DllInterfaces/GFXAPI.h"
#include <map>
#include <vector>
namespace Oyster
{
namespace Graphics
{
namespace Render
{
namespace Rendering
{
Definitions::Pointlight pl;
Model::Model* Basic::cube = NULL;
Model::Model* Basic::cube2 = NULL;
void Basic::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights)
{
Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(1,0,0,1));
Preparations::Basic::ClearRTV(Resources::Deffered::GBufferRTV,Resources::Deffered::GBufferSize,Math::Float4(0,0,0,1));
Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Deffered::GeometryPass);
void* data;
Definitions::LightConstants lc;
lc.InvProj = Projection.GetInverse();
lc.Pixels = Core::resolution;
lc.Lights = numLights;
lc.View = View;
lc.Proj = Projection;
lc.SSAORadius = 3;
data = Resources::Deffered::LightConstantsData.Map();
memcpy(data, &lc, sizeof(Definitions::LightConstants));
Resources::Deffered::LightConstantsData.Unmap();
data = Resources::Deffered::PointLightsData.Map();
memcpy(data, Lights, sizeof(Definitions::Pointlight) * numLights);
Resources::Deffered::PointLightsData.Unmap();
}
Math::Matrix RecursiveBindPosRotation(int index, Model::ModelInfo* mi)
{
if(mi->bones[index].Parent == index)
return mi->bones[index].Relative;
return mi->bones[index].Relative*mi->bones[mi->bones->Parent].Relative;
}
Math::Vector4 RecursiveBindPosPosition(int index, Model::ModelInfo* mi)
{
//return Math::Vector4::standard_unit_w;
if(mi->bones[index].Parent == index)
return mi->bones[index].Relative.v[3];
return Math::Vector4(RecursiveBindPosPosition(mi->bones->Parent, mi).xyz + (mi->bones[index].Relative.v[3] * RecursiveBindPosRotation(mi->bones->Parent,mi)).xyz,1);
}
void Basic::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection)
{
for(int i = 0; i < count; ++i)
{
if(&models[i] == NULL)
continue;
if(models[i].Visible)
{
Definitions::PerModel pm;
pm.WV = View * models[i].WorldMatrix;
pm.WVP = Projection * pm.WV;
void* data = Resources::Deffered::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Deffered::ModelData.Unmap();
Model::ModelInfo* info = (Model::ModelInfo*)models[i].info;
Definitions::AnimationData am; //final
if(info->Animated && models[i].AnimationPlaying != -1)
{
cube->WorldMatrix == Math::Matrix::identity;
//store inverse absolut transform
Math::Matrix* SkinTransform = new Math::Matrix[info->BoneCount];
Math::Matrix* BoneAnimated = new Math::Matrix[info->BoneCount];
Math::Matrix* BoneAbsAnimated = new Math::Matrix[info->BoneCount];
Math::Matrix Scale = Math::Matrix::identity;
Scale.m[0][0] = 0.1f;
Scale.m[1][1] = 0.1f;
Scale.m[2][2] = 1;
for(int b = 0; b <info->BoneCount; ++b)
{
Model::Bone Bone = info->bones[b];
SkinTransform[b] = Bone.Absolute.GetInverse();
BoneAnimated[b] = Bone.Relative;
BoneAbsAnimated[b] = Bone.Absolute;
cube2->WorldMatrix = Scale * info->bones[b].Absolute;
cube2->WorldMatrix.v[3] = info->bones[b].Absolute.v[3];
Basic::RenderScene(cube2,1, View, Projection);
}
//for each bone in animation
//HACK use first bone
int b = 0;
Model::Animation A = info->Animations[models[i].AnimationPlaying];
//for(int b = 0; b < A.Bones;++b)
{
//for each frame on bone Write current relative data
//HACK use first frame
int f = 0;
//for(int f = 0; f < A.Frames[b]; ++b)
{
//find right frame
//HACK accept first
Model::Frame Current = A.Keyframes[b][f];
//calculate new matrix
Model::Bone CBone = Current.bone;
BoneAnimated[CBone.Parent] = CBone.Relative;
}
}
//calculate Absolute Animation Transform
for(int b = 0; b < info->BoneCount; ++b)
{
BoneAbsAnimated[b] = BoneAbsAnimated[info->bones[b].Parent] * BoneAnimated[b];
cube->WorldMatrix = Scale * BoneAbsAnimated[b];
cube->WorldMatrix.v[3] = BoneAbsAnimated[b].v[3];
Basic::RenderScene(cube,1,View,Projection);
}
//write data to am
for(int b = 0; b < info->BoneCount; ++b)
{
am.animatedData[b] = BoneAbsAnimated[b] * SkinTransform[b];
}
//retore to draw animated model
Definitions::PerModel pm;
pm.WV = View * models[i].WorldMatrix;
pm.WVP = Projection * pm.WV;
void* data = Resources::Deffered::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Deffered::ModelData.Unmap();
am.Animated = 1;
}
else
am.Animated = 0;
data = Resources::Deffered::AnimationData.Map();
memcpy(data,&am,sizeof(Definitions::AnimationData));
Resources::Deffered::AnimationData.Unmap();
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0);
}
}
}
}
void Basic::EndFrame()
{
Core::PipelineManager::SetRenderPass(Resources::Deffered::LightPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::PipelineManager::SetRenderPass(Resources::Deffered::PostPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::swapChain->Present(0,0);
}
}
}
}
}