373 lines
9.3 KiB
C++
373 lines
9.3 KiB
C++
#ifndef GIM_QUANTIZED_SET_H_INCLUDED
|
|
#define GIM_QUANTIZED_SET_H_INCLUDED
|
|
|
|
/*! \file btGImpactQuantizedBvh.h
|
|
\author Francisco Leon Najera
|
|
*/
|
|
/*
|
|
This source file is part of GIMPACT Library.
|
|
|
|
For the latest info, see http://gimpact.sourceforge.net/
|
|
|
|
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
|
|
email: projectileman@yahoo.com
|
|
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btGImpactBvh.h"
|
|
#include "btQuantization.h"
|
|
|
|
|
|
|
|
|
|
|
|
///btQuantizedBvhNode is a compressed aabb node, 16 bytes.
|
|
///Node can be used for leafnode or internal node. Leafnodes can point to 32-bit triangle index (non-negative range).
|
|
ATTRIBUTE_ALIGNED16 (struct) BT_QUANTIZED_BVH_NODE
|
|
{
|
|
//12 bytes
|
|
unsigned short int m_quantizedAabbMin[3];
|
|
unsigned short int m_quantizedAabbMax[3];
|
|
//4 bytes
|
|
int m_escapeIndexOrDataIndex;
|
|
|
|
BT_QUANTIZED_BVH_NODE()
|
|
{
|
|
m_escapeIndexOrDataIndex = 0;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool isLeafNode() const
|
|
{
|
|
//skipindex is negative (internal node), triangleindex >=0 (leafnode)
|
|
return (m_escapeIndexOrDataIndex>=0);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getEscapeIndex() const
|
|
{
|
|
//btAssert(m_escapeIndexOrDataIndex < 0);
|
|
return -m_escapeIndexOrDataIndex;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void setEscapeIndex(int index)
|
|
{
|
|
m_escapeIndexOrDataIndex = -index;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getDataIndex() const
|
|
{
|
|
//btAssert(m_escapeIndexOrDataIndex >= 0);
|
|
|
|
return m_escapeIndexOrDataIndex;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void setDataIndex(int index)
|
|
{
|
|
m_escapeIndexOrDataIndex = index;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE bool testQuantizedBoxOverlapp(
|
|
unsigned short * quantizedMin,unsigned short * quantizedMax) const
|
|
{
|
|
if(m_quantizedAabbMin[0] > quantizedMax[0] ||
|
|
m_quantizedAabbMax[0] < quantizedMin[0] ||
|
|
m_quantizedAabbMin[1] > quantizedMax[1] ||
|
|
m_quantizedAabbMax[1] < quantizedMin[1] ||
|
|
m_quantizedAabbMin[2] > quantizedMax[2] ||
|
|
m_quantizedAabbMax[2] < quantizedMin[2])
|
|
{
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class GIM_QUANTIZED_BVH_NODE_ARRAY:public btAlignedObjectArray<BT_QUANTIZED_BVH_NODE>
|
|
{
|
|
};
|
|
|
|
|
|
|
|
|
|
//! Basic Box tree structure
|
|
class btQuantizedBvhTree
|
|
{
|
|
protected:
|
|
int m_num_nodes;
|
|
GIM_QUANTIZED_BVH_NODE_ARRAY m_node_array;
|
|
btAABB m_global_bound;
|
|
btVector3 m_bvhQuantization;
|
|
protected:
|
|
void calc_quantization(GIM_BVH_DATA_ARRAY & primitive_boxes, btScalar boundMargin = btScalar(1.0) );
|
|
|
|
int _sort_and_calc_splitting_index(
|
|
GIM_BVH_DATA_ARRAY & primitive_boxes,
|
|
int startIndex, int endIndex, int splitAxis);
|
|
|
|
int _calc_splitting_axis(GIM_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex);
|
|
|
|
void _build_sub_tree(GIM_BVH_DATA_ARRAY & primitive_boxes, int startIndex, int endIndex);
|
|
public:
|
|
btQuantizedBvhTree()
|
|
{
|
|
m_num_nodes = 0;
|
|
}
|
|
|
|
//! prototype functions for box tree management
|
|
//!@{
|
|
void build_tree(GIM_BVH_DATA_ARRAY & primitive_boxes);
|
|
|
|
SIMD_FORCE_INLINE void quantizePoint(
|
|
unsigned short * quantizedpoint, const btVector3 & point) const
|
|
{
|
|
bt_quantize_clamp(quantizedpoint,point,m_global_bound.m_min,m_global_bound.m_max,m_bvhQuantization);
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE bool testQuantizedBoxOverlapp(
|
|
int node_index,
|
|
unsigned short * quantizedMin,unsigned short * quantizedMax) const
|
|
{
|
|
return m_node_array[node_index].testQuantizedBoxOverlapp(quantizedMin,quantizedMax);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void clearNodes()
|
|
{
|
|
m_node_array.clear();
|
|
m_num_nodes = 0;
|
|
}
|
|
|
|
//! node count
|
|
SIMD_FORCE_INLINE int getNodeCount() const
|
|
{
|
|
return m_num_nodes;
|
|
}
|
|
|
|
//! tells if the node is a leaf
|
|
SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
|
|
{
|
|
return m_node_array[nodeindex].isLeafNode();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
|
|
{
|
|
return m_node_array[nodeindex].getDataIndex();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB & bound) const
|
|
{
|
|
bound.m_min = bt_unquantize(
|
|
m_node_array[nodeindex].m_quantizedAabbMin,
|
|
m_global_bound.m_min,m_bvhQuantization);
|
|
|
|
bound.m_max = bt_unquantize(
|
|
m_node_array[nodeindex].m_quantizedAabbMax,
|
|
m_global_bound.m_min,m_bvhQuantization);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB & bound)
|
|
{
|
|
bt_quantize_clamp( m_node_array[nodeindex].m_quantizedAabbMin,
|
|
bound.m_min,
|
|
m_global_bound.m_min,
|
|
m_global_bound.m_max,
|
|
m_bvhQuantization);
|
|
|
|
bt_quantize_clamp( m_node_array[nodeindex].m_quantizedAabbMax,
|
|
bound.m_max,
|
|
m_global_bound.m_min,
|
|
m_global_bound.m_max,
|
|
m_bvhQuantization);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
|
|
{
|
|
return nodeindex+1;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
|
|
{
|
|
if(m_node_array[nodeindex+1].isLeafNode()) return nodeindex+2;
|
|
return nodeindex+1 + m_node_array[nodeindex+1].getEscapeIndex();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
|
|
{
|
|
return m_node_array[nodeindex].getEscapeIndex();
|
|
}
|
|
|
|
SIMD_FORCE_INLINE const BT_QUANTIZED_BVH_NODE * get_node_pointer(int index = 0) const
|
|
{
|
|
return &m_node_array[index];
|
|
}
|
|
|
|
//!@}
|
|
};
|
|
|
|
|
|
|
|
//! Structure for containing Boxes
|
|
/*!
|
|
This class offers an structure for managing a box tree of primitives.
|
|
Requires a Primitive prototype (like btPrimitiveManagerBase )
|
|
*/
|
|
class btGImpactQuantizedBvh
|
|
{
|
|
protected:
|
|
btQuantizedBvhTree m_box_tree;
|
|
btPrimitiveManagerBase * m_primitive_manager;
|
|
|
|
protected:
|
|
//stackless refit
|
|
void refit();
|
|
public:
|
|
|
|
//! this constructor doesn't build the tree. you must call buildSet
|
|
btGImpactQuantizedBvh()
|
|
{
|
|
m_primitive_manager = NULL;
|
|
}
|
|
|
|
//! this constructor doesn't build the tree. you must call buildSet
|
|
btGImpactQuantizedBvh(btPrimitiveManagerBase * primitive_manager)
|
|
{
|
|
m_primitive_manager = primitive_manager;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btAABB getGlobalBox() const
|
|
{
|
|
btAABB totalbox;
|
|
getNodeBound(0, totalbox);
|
|
return totalbox;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void setPrimitiveManager(btPrimitiveManagerBase * primitive_manager)
|
|
{
|
|
m_primitive_manager = primitive_manager;
|
|
}
|
|
|
|
SIMD_FORCE_INLINE btPrimitiveManagerBase * getPrimitiveManager() const
|
|
{
|
|
return m_primitive_manager;
|
|
}
|
|
|
|
|
|
//! node manager prototype functions
|
|
///@{
|
|
|
|
//! this attemps to refit the box set.
|
|
SIMD_FORCE_INLINE void update()
|
|
{
|
|
refit();
|
|
}
|
|
|
|
//! this rebuild the entire set
|
|
void buildSet();
|
|
|
|
//! returns the indices of the primitives in the m_primitive_manager
|
|
bool boxQuery(const btAABB & box, btAlignedObjectArray<int> & collided_results) const;
|
|
|
|
//! returns the indices of the primitives in the m_primitive_manager
|
|
SIMD_FORCE_INLINE bool boxQueryTrans(const btAABB & box,
|
|
const btTransform & transform, btAlignedObjectArray<int> & collided_results) const
|
|
{
|
|
btAABB transbox=box;
|
|
transbox.appy_transform(transform);
|
|
return boxQuery(transbox,collided_results);
|
|
}
|
|
|
|
//! returns the indices of the primitives in the m_primitive_manager
|
|
bool rayQuery(
|
|
const btVector3 & ray_dir,const btVector3 & ray_origin ,
|
|
btAlignedObjectArray<int> & collided_results) const;
|
|
|
|
//! tells if this set has hierarcht
|
|
SIMD_FORCE_INLINE bool hasHierarchy() const
|
|
{
|
|
return true;
|
|
}
|
|
|
|
//! tells if this set is a trimesh
|
|
SIMD_FORCE_INLINE bool isTrimesh() const
|
|
{
|
|
return m_primitive_manager->is_trimesh();
|
|
}
|
|
|
|
//! node count
|
|
SIMD_FORCE_INLINE int getNodeCount() const
|
|
{
|
|
return m_box_tree.getNodeCount();
|
|
}
|
|
|
|
//! tells if the node is a leaf
|
|
SIMD_FORCE_INLINE bool isLeafNode(int nodeindex) const
|
|
{
|
|
return m_box_tree.isLeafNode(nodeindex);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getNodeData(int nodeindex) const
|
|
{
|
|
return m_box_tree.getNodeData(nodeindex);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void getNodeBound(int nodeindex, btAABB & bound) const
|
|
{
|
|
m_box_tree.getNodeBound(nodeindex, bound);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void setNodeBound(int nodeindex, const btAABB & bound)
|
|
{
|
|
m_box_tree.setNodeBound(nodeindex, bound);
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE int getLeftNode(int nodeindex) const
|
|
{
|
|
return m_box_tree.getLeftNode(nodeindex);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getRightNode(int nodeindex) const
|
|
{
|
|
return m_box_tree.getRightNode(nodeindex);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE int getEscapeNodeIndex(int nodeindex) const
|
|
{
|
|
return m_box_tree.getEscapeNodeIndex(nodeindex);
|
|
}
|
|
|
|
SIMD_FORCE_INLINE void getNodeTriangle(int nodeindex,btPrimitiveTriangle & triangle) const
|
|
{
|
|
m_primitive_manager->get_primitive_triangle(getNodeData(nodeindex),triangle);
|
|
}
|
|
|
|
|
|
SIMD_FORCE_INLINE const BT_QUANTIZED_BVH_NODE * get_node_pointer(int index = 0) const
|
|
{
|
|
return m_box_tree.get_node_pointer(index);
|
|
}
|
|
|
|
#ifdef TRI_COLLISION_PROFILING
|
|
static float getAverageTreeCollisionTime();
|
|
#endif //TRI_COLLISION_PROFILING
|
|
|
|
static void find_collision(const btGImpactQuantizedBvh * boxset1, const btTransform & trans1,
|
|
const btGImpactQuantizedBvh * boxset2, const btTransform & trans2,
|
|
btPairSet & collision_pairs);
|
|
};
|
|
|
|
|
|
#endif // GIM_BOXPRUNING_H_INCLUDED
|