Danbias/Code/Physics/OysterPhysics3D/Ray.cpp

107 lines
3.7 KiB
C++

/////////////////////////////////////////////////////////////////////
// Created by Dan Andersson 2013
/////////////////////////////////////////////////////////////////////
#include "Ray.h"
#include "OysterCollision3D.h"
using namespace ::Oyster::Collision3D;
using namespace ::Oyster::Math3D;
Ray::Ray( ) : ICollideable(Type_ray)
{
this->origin = Float4::standard_unit_w;
this->direction = Float4::standard_unit_z;
this->collisionDistance = 0.0f;
}
Ray::Ray( const Float3 &o, const Float3 &d ) : ICollideable(Type_ray)
{
this->origin = Float4( o, 1.0f );
this->direction = Float4( d, 0.0f );
this->collisionDistance = 0.0f;
}
Ray::Ray( const Float4 &o, const Float4 &d ) : ICollideable(Type_ray)
{
this->origin = o;
this->direction = d;
this->collisionDistance = 0.0f;
}
Ray::~Ray( ) {}
Ray & Ray::operator = ( const Ray &ray )
{
this->origin = ray.origin;
this->direction = ray.direction;
return *this;
}
::Utility::DynamicMemory::UniquePointer<ICollideable> Ray::Clone( ) const
{
return ::Utility::DynamicMemory::UniquePointer<ICollideable>( new Ray(*this) );
}
bool Ray::Intersects( const ICollideable &target ) const
{
switch( target.type )
{
case Type_universe:
this->collisionDistance = 0.0f;
return true;
case Type_point: return Utility::Intersect( *this, (const Point&)target, this->collisionDistance );
case Type_ray: return Utility::Intersect( *this, (const Ray&)target, this->collisionDistance, ((const Ray&)target).collisionDistance );
case Type_sphere: return Utility::Intersect( (const Sphere&)target, *this, this->collisionDistance );
case Type_plane: return Utility::Intersect( (const Plane&)target, *this, this->collisionDistance );
//case Type_triangle: return false; // TODO:
case Type_box_axis_aligned: return Utility::Intersect( (const BoxAxisAligned&)target, *this, this->collisionDistance );
case Type_box: return Utility::Intersect( (const Box&)target, *this, this->collisionDistance );
//case Type_frustrum: return false; // TODO:
default: return false;
}
}
bool Ray::Intersects( const ICollideable &target, Float4 &worldPointOfContact ) const
{
switch( target.type )
{
case Type_universe:
this->collisionDistance = 0.0f;
worldPointOfContact = this->origin;
return true;
case Type_point: return Utility::Intersect( *this, (const Point&)target, this->collisionDistance, worldPointOfContact );
case Type_ray: return Utility::Intersect( *this, (const Ray&)target, this->collisionDistance, ((const Ray&)target).collisionDistance, worldPointOfContact );
case Type_sphere: return Utility::Intersect( (const Sphere&)target, *this, this->collisionDistance, worldPointOfContact );
case Type_plane: return Utility::Intersect( (const Plane&)target, *this, this->collisionDistance, worldPointOfContact );
//case Type_triangle: return false; // TODO:
case Type_box_axis_aligned: return Utility::Intersect( (const BoxAxisAligned&)target, *this, this->collisionDistance, worldPointOfContact );
case Type_box: return Utility::Intersect( (const Box&)target, *this, this->collisionDistance, worldPointOfContact );
//case Type_frustrum: return false; // TODO:
default:
worldPointOfContact = Float3::null;
return false;
}
}
bool Ray::Contains( const ICollideable &target ) const
{
switch( target.type )
{
case Type_point: return Utility::Intersect( *this, (const Point&)target, this->collisionDistance );
case Type_ray: return Utility::Contains( *this, (const Ray&)target );
default: return false;
}
}
Float Ray::TimeOfContact( const ICollideable &deuterStart, const ICollideable &deuterEnd ) const
{
if( deuterStart.type != deuterEnd.type )
return -1.0f;
switch( deuterStart.type )
{ // TODO: more to implement
case Type_universe: return 0.0f;
default: return 1.0f;
}
}