213 lines
4.8 KiB
C
213 lines
4.8 KiB
C
#ifndef BT_BASIC_GEOMETRY_OPERATIONS_H_INCLUDED
|
|
#define BT_BASIC_GEOMETRY_OPERATIONS_H_INCLUDED
|
|
|
|
/*! \file btGeometryOperations.h
|
|
*\author Francisco Leon Najera
|
|
|
|
*/
|
|
/*
|
|
This source file is part of GIMPACT Library.
|
|
|
|
For the latest info, see http://gimpact.sourceforge.net/
|
|
|
|
Copyright (c) 2007 Francisco Leon Najera. C.C. 80087371.
|
|
email: projectileman@yahoo.com
|
|
|
|
|
|
This software is provided 'as-is', without any express or implied warranty.
|
|
In no event will the authors be held liable for any damages arising from the use of this software.
|
|
Permission is granted to anyone to use this software for any purpose,
|
|
including commercial applications, and to alter it and redistribute it freely,
|
|
subject to the following restrictions:
|
|
|
|
1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
|
|
2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
|
|
3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
#include "btBoxCollision.h"
|
|
|
|
|
|
|
|
|
|
|
|
#define PLANEDIREPSILON 0.0000001f
|
|
#define PARALELENORMALS 0.000001f
|
|
|
|
|
|
#define BT_CLAMP(number,minval,maxval) (number<minval?minval:(number>maxval?maxval:number))
|
|
|
|
/// Calc a plane from a triangle edge an a normal. plane is a vec4f
|
|
SIMD_FORCE_INLINE void bt_edge_plane(const btVector3 & e1,const btVector3 & e2, const btVector3 & normal,btVector4 & plane)
|
|
{
|
|
btVector3 planenormal = (e2-e1).cross(normal);
|
|
planenormal.normalize();
|
|
plane.setValue(planenormal[0],planenormal[1],planenormal[2],e2.dot(planenormal));
|
|
}
|
|
|
|
|
|
|
|
//***************** SEGMENT and LINE FUNCTIONS **********************************///
|
|
|
|
/*! Finds the closest point(cp) to (v) on a segment (e1,e2)
|
|
*/
|
|
SIMD_FORCE_INLINE void bt_closest_point_on_segment(
|
|
btVector3 & cp, const btVector3 & v,
|
|
const btVector3 &e1,const btVector3 &e2)
|
|
{
|
|
btVector3 n = e2-e1;
|
|
cp = v - e1;
|
|
btScalar _scalar = cp.dot(n)/n.dot(n);
|
|
if(_scalar <0.0f)
|
|
{
|
|
cp = e1;
|
|
}
|
|
else if(_scalar >1.0f)
|
|
{
|
|
cp = e2;
|
|
}
|
|
else
|
|
{
|
|
cp = _scalar*n + e1;
|
|
}
|
|
}
|
|
|
|
|
|
//! line plane collision
|
|
/*!
|
|
*\return
|
|
-0 if the ray never intersects
|
|
-1 if the ray collides in front
|
|
-2 if the ray collides in back
|
|
*/
|
|
|
|
SIMD_FORCE_INLINE int bt_line_plane_collision(
|
|
const btVector4 & plane,
|
|
const btVector3 & vDir,
|
|
const btVector3 & vPoint,
|
|
btVector3 & pout,
|
|
btScalar &tparam,
|
|
btScalar tmin, btScalar tmax)
|
|
{
|
|
|
|
btScalar _dotdir = vDir.dot(plane);
|
|
|
|
if(btFabs(_dotdir)<PLANEDIREPSILON)
|
|
{
|
|
tparam = tmax;
|
|
return 0;
|
|
}
|
|
|
|
btScalar _dis = bt_distance_point_plane(plane,vPoint);
|
|
char returnvalue = _dis<0.0f? 2:1;
|
|
tparam = -_dis/_dotdir;
|
|
|
|
if(tparam<tmin)
|
|
{
|
|
returnvalue = 0;
|
|
tparam = tmin;
|
|
}
|
|
else if(tparam>tmax)
|
|
{
|
|
returnvalue = 0;
|
|
tparam = tmax;
|
|
}
|
|
pout = tparam*vDir + vPoint;
|
|
return returnvalue;
|
|
}
|
|
|
|
|
|
//! Find closest points on segments
|
|
SIMD_FORCE_INLINE void bt_segment_collision(
|
|
const btVector3 & vA1,
|
|
const btVector3 & vA2,
|
|
const btVector3 & vB1,
|
|
const btVector3 & vB2,
|
|
btVector3 & vPointA,
|
|
btVector3 & vPointB)
|
|
{
|
|
btVector3 AD = vA2 - vA1;
|
|
btVector3 BD = vB2 - vB1;
|
|
btVector3 N = AD.cross(BD);
|
|
btScalar tp = N.length2();
|
|
|
|
btVector4 _M;//plane
|
|
|
|
if(tp<SIMD_EPSILON)//ARE PARALELE
|
|
{
|
|
//project B over A
|
|
bool invert_b_order = false;
|
|
_M[0] = vB1.dot(AD);
|
|
_M[1] = vB2.dot(AD);
|
|
|
|
if(_M[0]>_M[1])
|
|
{
|
|
invert_b_order = true;
|
|
BT_SWAP_NUMBERS(_M[0],_M[1]);
|
|
}
|
|
_M[2] = vA1.dot(AD);
|
|
_M[3] = vA2.dot(AD);
|
|
//mid points
|
|
N[0] = (_M[0]+_M[1])*0.5f;
|
|
N[1] = (_M[2]+_M[3])*0.5f;
|
|
|
|
if(N[0]<N[1])
|
|
{
|
|
if(_M[1]<_M[2])
|
|
{
|
|
vPointB = invert_b_order?vB1:vB2;
|
|
vPointA = vA1;
|
|
}
|
|
else if(_M[1]<_M[3])
|
|
{
|
|
vPointB = invert_b_order?vB1:vB2;
|
|
bt_closest_point_on_segment(vPointA,vPointB,vA1,vA2);
|
|
}
|
|
else
|
|
{
|
|
vPointA = vA2;
|
|
bt_closest_point_on_segment(vPointB,vPointA,vB1,vB2);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if(_M[3]<_M[0])
|
|
{
|
|
vPointB = invert_b_order?vB2:vB1;
|
|
vPointA = vA2;
|
|
}
|
|
else if(_M[3]<_M[1])
|
|
{
|
|
vPointA = vA2;
|
|
bt_closest_point_on_segment(vPointB,vPointA,vB1,vB2);
|
|
}
|
|
else
|
|
{
|
|
vPointB = invert_b_order?vB1:vB2;
|
|
bt_closest_point_on_segment(vPointA,vPointB,vA1,vA2);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
N = N.cross(BD);
|
|
_M.setValue(N[0],N[1],N[2],vB1.dot(N));
|
|
|
|
// get point A as the plane collision point
|
|
bt_line_plane_collision(_M,AD,vA1,vPointA,tp,btScalar(0), btScalar(1));
|
|
|
|
/*Closest point on segment*/
|
|
vPointB = vPointA - vB1;
|
|
tp = vPointB.dot(BD);
|
|
tp/= BD.dot(BD);
|
|
tp = BT_CLAMP(tp,0.0f,1.0f);
|
|
|
|
vPointB = tp*BD + vB1;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#endif // GIM_VECTOR_H_INCLUDED
|