Danbias/Code/OysterGraphics/Render/DefaultRenderer.cpp

214 lines
7.0 KiB
C++

#include "DefaultRenderer.h"
#include "Resources.h"
#include "../Definitions/GraphicalDefinition.h"
#include "../Model/ModelInfo.h"
#include "../DllInterfaces/GFXAPI.h"
#include <map>
#include <vector>
namespace Oyster
{
namespace Graphics
{
namespace Render
{
Definitions::Pointlight pl;
Model::Model* DefaultRenderer::cube = NULL;
Model::Model* DefaultRenderer::cube2 = NULL;
void DefaultRenderer::NewFrame(Oyster::Math::Float4x4 View, Oyster::Math::Float4x4 Projection, Definitions::Pointlight* Lights, int numLights)
{
Preparations::Basic::ClearBackBuffer(Oyster::Math::Float4(1,0,0,1));
Preparations::Basic::ClearRTV(Resources::GBufferRTV,Resources::GBufferSize,Math::Float4(0,0,0,0));
Core::PipelineManager::SetRenderPass(Graphics::Render::Resources::Gather::Pass);
void* data;
Definitions::LightConstants lc;
lc.InvProj = Projection.GetInverse();
lc.Pixels = Core::resolution;
lc.Lights = numLights;
lc.View = View;
lc.Proj = Projection;
lc.SSAORadius = 3;
data = Resources::Light::LightConstantsData.Map();
memcpy(data, &lc, sizeof(Definitions::LightConstants));
Resources::Light::LightConstantsData.Unmap();
data = Resources::Light::PointLightsData.Map();
memcpy(data, Lights, sizeof(Definitions::Pointlight) * numLights);
Resources::Light::PointLightsData.Unmap();
Definitions::PostData pd;
pd.x = lc.Pixels.x;
pd.y = lc.Pixels.y;
data = Resources::Post::Data.Map();
memcpy(data, &pd, sizeof(Definitions::PostData));
Resources::Post::Data.Unmap();
}
Math::Matrix RecursiveBindPosRotation(int index, Model::ModelInfo* mi)
{
if(mi->bones[index].Parent == index)
return mi->bones[index].Relative;
return mi->bones[index].Relative*mi->bones[mi->bones->Parent].Relative;
}
Math::Vector4 RecursiveBindPosPosition(int index, Model::ModelInfo* mi)
{
//return Math::Vector4::standard_unit_w;
if(mi->bones[index].Parent == index)
return mi->bones[index].Relative.v[3];
return Math::Vector4(RecursiveBindPosPosition(mi->bones->Parent, mi).xyz + (mi->bones[index].Relative.v[3] * RecursiveBindPosRotation(mi->bones->Parent,mi)).xyz,1);
}
void DefaultRenderer::RenderScene(Model::Model* models, int count, Math::Matrix View, Math::Matrix Projection)
{
for(int i = 0; i < count; ++i)
{
if(&models[i] == NULL)
continue;
if(models[i].Visible)
{
Definitions::PerModel pm;
pm.WV = View * models[i].WorldMatrix;
pm.WVP = Projection * pm.WV;
Model::ModelInfo* info = models[i].info;
Definitions::AnimationData am; //final
if(info->Animated && models[i].AnimationPlaying != -1)
{
cube->WorldMatrix = Math::Matrix::identity;
////store inverse absolut transform
Math::Matrix SkinTransform[100];
Math::Matrix BoneAnimated[100];
Math::Matrix BoneAbsAnimated[100];
Math::Matrix Scale = Math::Matrix::identity;
Scale.m[0][0] = 1;
Scale.m[1][1] = 1;
Scale.m[2][2] = 2;
for(int b = 0; b <info->BoneCount; ++b)
{
Model::Bone Bone = info->bones[b];
SkinTransform[b] = Bone.Absolute.GetInverse();
BoneAnimated[b] = Bone.Relative;
BoneAbsAnimated[b] = Bone.Absolute;
cube2->WorldMatrix = Scale;
cube2->WorldMatrix.v[3] = info->bones[b].Absolute.v[3];
}
int b = 0;
Model::Animation A = info->Animations[models[i].AnimationPlaying];
while(models[i].AnimationTime>A.duration)
models[i].AnimationTime -= (float)A.duration;
float position = models[i].AnimationTime;
for(int b = 0; b < A.Bones;++b)
{
//find current frame
int nrOfFrames = A.Frames[b];
Model::Frame PFrame = A.Keyframes[b][nrOfFrames-1];
Model::Frame NFrame = A.Keyframes[b][nrOfFrames-1];
bool FrameFound = false;
for (int i = 0; i < nrOfFrames; i++)
{
if(position < A.Keyframes[b][i].time)
{
PFrame = A.Keyframes[b][i-1];
NFrame = A.Keyframes[b][i];
break;
}
}
float denominator = (float)(NFrame.time - PFrame.time);
if(denominator == 0)
{
BoneAnimated[PFrame.bone.Parent] = PFrame.bone.Relative;
continue;
}
float inter = (float)((position - PFrame.time) / denominator);
Math3D::InterpolateOrientation_UsingNonRigidNlerp(PFrame.bone.Relative,NFrame.bone.Relative,inter, BoneAnimated[PFrame.bone.Parent]);
}
////calculate Absolute Animation Transform
for(int b = 0; b < info->BoneCount; ++b)
{
BoneAbsAnimated[b] = BoneAbsAnimated[info->bones[b].Parent] * BoneAnimated[b];
//SkinTransform[b] = BoneAbsAnimated[b];
cube->WorldMatrix = Scale;
cube->WorldMatrix.v[3] = BoneAbsAnimated[b].v[3];
cube->WorldMatrix = models[i].WorldMatrix * cube->WorldMatrix;
DefaultRenderer::RenderScene(cube,1,View,Projection);
}
//write data to am
for(int b = 0; b < info->BoneCount; ++b)
{
am.AnimatedData[b] = (BoneAbsAnimated[b] * SkinTransform[b]);
}
void *data = Resources::Gather::AnimationData.Map();
memcpy(data,&am,sizeof(Definitions::AnimationData));
Resources::Gather::AnimationData.Unmap();
pm.Animated = 1;
}
else
pm.Animated = 0;
void* data = Resources::Gather::ModelData.Map();
memcpy(data,&(pm),sizeof(pm));
Resources::Gather::ModelData.Unmap();
if(info->Material.size())
{
Core::deviceContext->PSSetShaderResources(0,(UINT)info->Material.size(),&(info->Material[0]));
}
info->Vertices->Apply();
if(info->Indexed)
{
info->Indecies->Apply();
Oyster::Graphics::Core::deviceContext->DrawIndexed(info->IndexCount,0,0);
}
else
{
Oyster::Graphics::Core::deviceContext->Draw(info->VertexCount,0);
}
}
}
}
void DefaultRenderer::EndFrame()
{
Core::PipelineManager::SetRenderPass(Resources::Light::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::HorPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::PipelineManager::SetRenderPass(Resources::Blur::VertPass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::PipelineManager::SetRenderPass(Resources::Post::Pass);
Core::deviceContext->Dispatch((UINT)((Core::resolution.x + 15U) / 16U), (UINT)((Core::resolution.y + 15U) / 16U), 1);
Core::swapChain->Present(0,0);
}
}
}
}